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a b s t r a c t

For a graph, G, and a vertex v ∈ V (G), let N[v] be the set of vertices adjacent to and
including v. A set D ⊆ V (G) is a (vertex) identifying code if for any two distinct vertices
v1, v2 ∈ V (G), the vertex sets N[v1] ∩ D and N[v2] ∩ D are distinct and non-empty. We
consider theminimumdensity of a vertex identifying code for the infinite hexagonal grid. In
2000, Cohen et al. constructed two codes with a density of 3

7 ≈ 0.428571, and this remains
the best known upper bound. Until now, the best known lower bound was 12

29 ≈ 0.413793
and was proved by Cranston and Yu in 2009. We present three new codes with a density
of 3

7 , and we improve the lower bound to 5
12 ≈ 0.416667.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of (vertex) identifying codes is motivated by the desire to detect failures efficiently in a multi-processor
network. Such a network can be modeled as an undirected graph, G, where V (G) represents the set of processors and
E(G) represents the set of connections among processors. Suppose we place detectors on a subset of these processors.
These detectors monitor all processors within a neighborhood of radius r and send a signal to a central controller when
a failure occurs. We assume that no two failures occur simultaneously. A signal from a detector, d, indicates that a processor
in the r-neighborhood of d has failed but provides no further information. Now, any given processor, p, might be in the
r-neighborhood of several detectors, d1, d2, d3 . . . . Then, when p fails, the central controller receives signals from d1, d2,
d3 . . . . Let us call {d1, d2, d3, . . .} the identifying set of p in G. If each processor has a unique and non-empty trace, then the
central controller can determine which processor failed simply by noting the detectors from which signals were received.
In this case, we call the subset of processors on which detectors were placed an identifying code.

Vertex identifying codes were first introduced in 1998 by Karpovsky, Chakrabarty and Levitin [7]. The processors of the
preceding paragraph become the vertices of a graph, and the processors on which detectors have been placed become the
vertex subset called a vertex identifying code. In the example above,we considered detectorswhichmonitor a neighborhood
of radius r . In this paper, we concern ourselves with the case in which r = 1.

Let Ni(v) be the set of vertices at distance-i from a vertex, v, and let N[v] = N1(v) ∪ {v}.

Definition 1.1. Consider a graph, G. A set D ⊆ V (G) is an identifying code if

(i) for all v ∈ V (G), N[v] ∩ D ≠ ∅

(ii) for all v1, v2 ∈ V (G) where v1 ≠ v2, N[v1] ∩ D ≠ N[v2] ∩ D.
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Fig. 1.1. Three new codes with a density of 3/7. The solid vertices are in the code.

From Definition 1.1, we see that some graphs do not admit vertex identifying codes. In particular, if N[v1] = N[v2] for
some distinct v1, v2 ∈ V (G) thenG does not admit a vertex identifying code becauseN[v1]∩D = N[v2]∩D for anyD ⊆ V (G).
On the other hand, if N[v1] ≠ N[v2] for all distinct v1, v2 ∈ V (G) then G admits a vertex identifying code because V (G) is
such a code.

Of particular interest are vertex identifying codes of minimal cardinality. When dealing with infinite graphs, we consider
instead the density of a vertex identifying code, i.e., the ratio of the number of vertices in the code to the total number of
vertices. Let G be an infinite graph, and let D ⊆ V (G) be a vertex identifying code for G. Then, for some v ∈ V (G), the set of
vertices in D within distance-k of v is given by

k
i=0 Ni(v) ∩ D. Let σ(D,G) be the density of D in G. Then,

σ(D,G) = lim sup
k→∞

 k
i=0

Ni(v) ∩ D
 k

i=0
Ni(v)

 . (1.1)

Let σ0(G) be the minimum density of a vertex identifying code for G; that is,

σ0(G) = min
D

{σ(D,G)}. (1.2)

Karpovsky et al. [7] considered the minimum density of vertex identifying codes for the infinite triangular (GT ), square
(GS) and hexagonal (GH ) grids. They showed σ0(GT ) = 1/4. In 1999, Cohen et al. [2] proved σ0(GS) ≤ 7/20, and, in 2005,
Ben-Haim and Litsyn [1] completed the proof by showing σ0(GS) ≥ 7/20.

We concern ourselves in this paperwithσ0(GH). In 1998, Karpovsky et al. [7] showedσ0(GH) ≥ 2/5 = 0.4. In 2000, Cohen
et al. [3] improved this result to σ0(GH) ≥ 16/39 ≈ 0.410256 and constructed two codes with a density of 3/7 ≈ 0.428571
implying σ0(GH) ≤ 3/7. In 2009, Cranston and Yu [4] proved σ0(GH) ≥ 12/29 ≈ 0.413793. It should be noted that the
optimal results have been obtained for r-identifying codes with r ≥ 2 for the hexagonal grid, see [5,6,8,9].

In this paper, we present three new codes with a density of 3/7 and prove σ0(GH) ≥ 5/12 ≈ 0.416667. In conclusion, it
is now known that 5/12 ≤ σ0(GH) ≤ 3/7.

Suppose β is an upper bound on σ0(GH). To prove this, we need only show the existence of a code, D, with σ(D,GH) ≤ β .
When constructing such codes, we usually look for tiling patterns. Since the pattern repeats ad infinitum, the density of one
tile is the density of the whole graph. Fig. 1.1 shows three new codes for the infinite hexagonal grid with a density of 3/7.

Theorem 1.2. The minimum density of a vertex identifying code for the infinite hexagonal grid is greater than or equal to 5/12.

To prove Theorem 1.2, we employ the dischargingmethod. LetD be an arbitrary vertex identifying code for GH . We assign
1 ‘‘charge’’ to each vertex in Dwhich we then redistribute so that every vertex in GH retains at least 5/12 charge. The charge
is redistributed in accordance with a set of ‘‘Discharging Rules’’. Since Dwas chosen arbitrarily, we then conclude that 5/12
is a lower bound on σ0(GH).

As the proof of Theorem 1.2 is rather lengthy, we include a sketch of the proof in Section 2. In Section 3, we introduce
several properties of vertex identifying codes for GH which we will reference throughout the paper. Section 4 is devoted
to terminology and notations; the vast majority of relevant notions are defined here. In Section 5, we state several lemmas
concerning the structure of vertex identifying codes forGH . However,we omit the proofs of these lemmas (interested readers
can find them at http://arxiv.org/abs/1110.1097). The main result of this paper, Theorem 1.2, is proved in Section 6.

As an additional remark, we do not think a more complicated analysis using discharging method will produce results
better than 5/12. A different approach should be used to improve the lower bound, or a construction should be found with
density 5/12.
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