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a b s t r a c t

Let R(G) be the graph obtained from G by adding a new vertex corresponding to each edge
ofG and by joining each new vertex to the end vertices of the corresponding edge, andQ (G)
be the graph obtained from G by inserting a new vertex into every edge of G and by joining
by edges those pairs of these newverticeswhich lie on adjacent edges ofG. In this paper, we
determine the Laplacian polynomials of R(G) and Q (G) of a regular graph G; on the other
hand, we derive formulae and lower bounds of the Kirchhoff index of these graphs.
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1. Introduction

Let G be a simple graphwith vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Denote by A(G) and
D(G) the adjacency matrix and the diagonal matrix with the vertex degrees of G on the diagonal, respectively. The matrix
L(G) = D(G) − A(G) is called the Laplacian matrix of G, for details see [22,23]. Denote by PG(λ) and µG(λ) the adjacent
characteristic polynomial det(λIn −A(G)) and the Laplacian characteristic polynomial det(λIn −L(G)) of G, respectively. The
multiset of eigenvalues of A(G) (resp., L(G)) are called the adjacency (resp., Laplacian) spectrum of G. Since A(G) and L(G) are
all real symmetric matrices, their eigenvalues are real numbers. So we can assume that λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) (resp.,
µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G)) are the adjacency (resp., Laplacian) eigenvalues of G. Clearly, all Laplacian eigenvalues of
G are non-negative. If the graph G is connected, then µi(G) > 0 for i = 1, 2, . . . , n − 1 and µn(G) = 0 [13,14,22]. In what
follows, the Laplacian spectrum of G is denoted by S(G) = {µ1, µ2, . . . , µn}.

Suppose G is a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Define two
graph operators R and Q (see the definitions in p. 63 in [5]) as follows. Let R(G) = (V (R(G)), E(R(G))) be the graph obtained
from G by adding a new vertex e′ corresponding to each edge e = (a, b) of G and by joining each new vertex e′ to the end
vertices a and b of the corresponding edge e = (a, b), i.e., R(G) is obtained from G by ‘‘changing each edge e = (a, b) of G
into a triangle ae′b’’. Thus, V (R(G)) = V (G) ∪ {e′

| e ∈ E(G)} and E(R(G)) = E(G) ∪ {(vi, e′), (vj, e′) | e = (vi, vj) ∈ E(G)}
(see Fig. 1(a) and (b) for example). Let Q (G) = (V (Q (G)), E(Q (G))) be the graph obtained from G by inserting a new vertex
e′

i into every edge ei of G and by joining by edges those pairs of these new vertices e′

i and e′

j which lie on adjacent edges ei
and ej of G, i, j = 1, 2, . . . ,m. Denote by vi1 and vi2 the end-vertices of edge ei of G. Then V (Q (G)) = V (G) ∪ {e′

i | ei ∈ E(G),
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Fig. 1. (a) The graph G. (b) The graph R(G). (c) The graph Q (G).

i = 1, 2, . . . ,m} and E(Q (G)) = {(vi1, e′

i), (vi2, e′

i)|i = 1, 2, . . . ,m} ∪ {(e′

i, ej
′) | ei and ej are adjacent edges of G} (see

Fig. 1(a) and (c) for example).
In some graph theory problems it is necessary to compute the spectrum (resp., Laplacian spectrum) of a compound graph,

obtained from some operations from some simple graphs. In [5] there exist many relations connecting the spectrum (resp.,
Laplacian spectrum) of a compound graph with spectra (resp., Laplacian spectra [17,24]) of graphs from which that graph
is derived. However, it is worth considering the corresponding problems of graphs derived from a single graph, such as line
graph, subdivision graph, total graph, R(G), Q (G), etc. In [17], the Laplacian polynomial of line graph, the subdivision graph
and total graph of the regular graph are obtained. In the presentwork, on one hand, we determine the Laplacian polynomials
of R(G) andQ (G); on the other hand, for these graphs, we compute the topological indices based on the concept of resistance
distance.

Let G = (V , E) be a connected graph with vertex set V = {v1, v2, . . . , vn}. The (ordinary) distance between vertices vi
and vj, denoted by dij, is the length of a shortest path connecting them. The original index based on distance in a graphG is the
Wiener index W (G) [28], which counts the sum of distances between pairs of vertices in G. In 1993, Klein and Randić [20]
defined a new distance function named resistance distance framed in terms of electrical network theory. However, this
concept has been discussed much earlier (1949) for another purpose by Foster [10] as recently pointed out by Palacios [27].

The resistance distance between vertices vi and vj of G, denoted by rij, is defined to be the effective resistance between
nodes vi and vj as computed with Ohm’s law when all the edges of G are considered to be unit resistors. As an analogue
to the Wiener index, the sum Kf (G) =


i<j rij was proposed in [20], later called the Kirchhoff index of G in [4]. Klein and

Randić [20] proved that rij ≤ dij with equality if and only if there is exactly one path between vi and vj, and so Kf (G) ≤ W (G)
with equality if and only if G is a tree.

Like theWiener index, the Kirchhoff index has been found noteworthy applications in chemistry, as amolecular structure
descriptor [4,6,9,29,34]. However, it is rather hard to implement some algorithms [1,3,20,25,35] to compute resistance
distances and Kirchhoff index of a graph. Hence it makes sense to determine bounds or find formulae for the Kirchhoff index
for some classes of graphs. In [31], sharp bounds for Kirchhoff index of unicyclic graphs are obtained. H. Zhang et al. [32]
characterized the graphswith extremal Kirchhoff index among all n-vertex bicyclic graphs. The Kirchhoff index has also been
computed for some classes of graphs, such as cycles [19,21], complete graphs [21], geodetic graphs [26], some fullerenes
including buckminsterfullerene [1,2,11], distance transitive graphs [26], and so on [1,18,26,25,27]. The Kirchhoff index of
certain composite operations between two graphs was studied as well, such as product, lexicographic product [30] and join,
corona, cluster [33]. Another interesting result is the comparison between Kirchhoff index and the Laplacian energy-like
invariant [7].

It is of interest to study the Kirchhoff index of graphs derived from a single graph. In [12], the authors obtained formulae
and lower bounds of the Kirchhoff index of the line graph, subdivision graph, total graph of a connected regular graph,
respectively. The main aim of this paper is to report formulae and lower bounds for the Kirchhoff index of R(G) and Q (G) of
regular graph G, respectively. In particular, special formulae are given for the Kirchhoff index of R(G) and Q (G), where G is
a complete graph Kn, a cycle Cn and a regular complete bipartite graph Kn,n.

2. The Laplacian polynomials of R(G) and Q (G)

Let G be a regular graph. In this section, we show that the Laplacian polynomial of R(G) and Q (G) are determined by the
characteristic polynomial or the Laplacian polynomial of G, respectively.We first list some known results whichwill be used
later.

Lemma 2.1 ([16]). Let M be a non-singular square matrix. Then

det

M N
P Q


= detMdet(Q − PM−1N).

The line graph of a graph G, denoted by L(G), is the graph whose vertices correspond to the edges of G, with two vertices
of L(G) being adjacent if and only if the corresponding edges of G share a common vertex. The following result is well
known [5].
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