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a b s t r a c t

We propose local versions of monotonicity for Boolean and pseudo-Boolean functions:
say that a pseudo-Boolean (Boolean) function is p-locally monotone if none of its partial
derivatives changes in sign on tuples which differ in less than p positions. As it turns
out, this parameterized notion provides a hierarchy of monotonicities for pseudo-Boolean
(Boolean) functions.

Local monotonicities are shown to be tightly related to lattice counterparts of classical
partial derivatives via the notion of permutable derivatives. More precisely, p-locally
monotone functions are shown to have p-permutable lattice derivatives and, in the case
of symmetric functions, these two notions coincide. We provide further results relating
these two notions, and present a classification of p-locally monotone functions, as well as
of functions having p-permutable derivatives, in terms of certain forbidden ‘‘sections’’, i.e.,
functions which can be obtained by substituting constants for variables. This description is
made explicit in the special case when p = 2.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, let [n] = {1, . . . , n} and B = {0, 1}. We are interested in the so-called Boolean functions
f :Bn

→ B and pseudo-Boolean functions f :Bn
→ R, where n denotes the arity of f . The pointwise ordering of functions is

denoted by ≤, i.e., f ≤ g means that f (x) ≤ g(x) for all x ∈ Bn. The negation of x ∈ B is defined by x = x ⊕ 1, where ⊕

stands for addition modulo 2. For x, y ∈ B, we set x ∧ y = min(x, y) and x ∨ y = max(x, y).
For k ∈ [n], x ∈ Bn, and a ∈ B, let xak be the tuple in Bn whose i-th component is a, if i = k, and xi, otherwise. We use the

shorthand notation xabjk for (xaj )
b
k = (xbk)

a
j . More generally, for S ⊆ [n], a ∈ Bn, and x ∈ BS , let axS be the tuple in Bn whose

i-th component is xi, if i ∈ S, and ai, otherwise.
Let i ∈ [n] and f :Bn

→ R. A variable xi is said to be essential in f , or that f depends on xi, if there exists a ∈ Bn such that
f (a0i ) ≠ f (a1i ). Otherwise, xi is said to be inessential in f . Let S ⊆ [n] and f :Bn

→ R. We say that g:BS
→ R is an S-section

of f if there exists a ∈ Bn such that g(x) = f (axS) for all x ∈ BS . By a section of f wemean an S-section of f for some S ⊆ [n],
i.e., any function which can be obtained from f by replacing some of its variables by constants.

The (discrete) partial derivative of f :Bn
→ R with respect to its k-th variable is the function ∆kf :Bn

→ R defined by
∆kf (x) = f (x1k) − f (x0k); see [9,12]. Note that ∆kf does not depend on its k-th variable, hence it could be regarded as a
function of arity n − 1, but for notational convenience we define it as an n-ary function.

A pseudo-Boolean function f :Bn
→ R can always be represented by a multilinear polynomial of degree at most n

(see [13]), that is,

f (x) =


S⊆[n]

aS

i∈S

xi, (1)
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where aS ∈ R. For instance, the multilinear expression for a binary pseudo-Boolean function is given by

a0 + a1 x1 + a2 x2 + a12 x1x2. (2)

This representation is very convenient for computing the partial derivatives of f . Indeed, ∆kf can be obtained by applying
the corresponding formal derivative to the multilinear representation of f . Thus, from (1), we immediately obtain

∆kf (x) =


S∋k

aS


i∈Sr{k}

xi. (3)

We say that f is isotone (resp. antitone) in its k-th variable if ∆kf (x) ≥ 0 (resp. ∆kf (x) ≤ 0) for all x ∈ Bn. If f is either
isotone or antitone in its k-th variable, then we say that f is monotone in its k-th variable. If f is isotone (resp. antitone,
monotone) in all of its variables, then f is an isotone (resp. antitone, monotone) function.1 It is clear that any section of an
isotone (resp. antitone, monotone) function is also isotone (resp. antitone, monotone). Thus defined, a function f :Bn

→ R
is monotone if and only if none of its partial derivatives changes in sign on Bn.

Noteworthy examples of monotone functions include the so-called pseudo-polynomial functions [2,3] which play an
important role, for instance, in the qualitative approach to decision making; for general background see, e.g., [1,6]. In the
current setting, pseudo-polynomial functions can be thought of as compositions p ◦ (ϕ1, . . . , ϕn) of (lattice) polynomial
functions p: [a, b]n → [a, b], a < b, with unary functionsϕi:B → [a, b], i ∈ [n]. Interestingly, pseudo-polynomial functions
f :Bn

→ R coincide exactly with those pseudo-Boolean functions that are monotone.

Theorem 1. A pseudo-Boolean function is monotone if and only if it is a pseudo-polynomial function.

Proof. Clearly, every pseudo-polynomial function is monotone. For the converse, suppose that f :Bn
→ R is monotone and

let a ∈ R be the minimum and b ∈ R the maximum of f . Constant functions are obviously pseudo-polynomial functions,
therefore we assume a < b. Define ϕi:B → {a, b} by ϕi(0) = a and ϕi(1) = b if f is isotone in its i-th variable and ϕi(0) = b
and ϕi(1) = a otherwise. Let p: {a, b}n → [a, b] be given by p = f ◦ (ϕ−1

1 , . . . , ϕ−1
n ). Thus defined, p is isotone (i.e., order-

preserving) in each variable and hence, by Theorem D in [10, p. 237], there exists a polynomial function p′: [a, b]n → [a, b]
such that p′

|{a,b}n = p. Therefore f is the pseudo-polynomial function p′
◦ (ϕ1, . . . , ϕn). �

In the special case of Boolean functions, monotone functions are most frequent among functions of small (essential)
arity. For instance, among binary functions f :B2

→ B, there are exactly two non-monotone functions, namely the Boolean
sum x1 ⊕ x2 and its negation x1 ⊕ x2 ⊕ 1. Each of these functions is in fact highly non-monotone in the sense that
any of its partial derivatives changes in sign when negating its unique essential variable; this is not the case, e.g., with
f (x1, x2, x3) = x1 − x1x2 + x2x3 which is non-monotone but none of its partial derivatives changes in sign when negating
any of its variables (see Example 6).

This fact motivates the study of these ‘‘skew’’ functions, i.e., these highly non-monotone functions. To formalize this
problem we propose the following parameterized relaxations of monotonicity: a function f :Bn

→ R is p-locally monotone
if none of its partial derivatives changes in sign when negating less than p of its variables, or equivalently, on tuples which
differ in less than ppositions.With this terminology, our problem reduces to askingwhich Boolean functions are not 2-locally
monotone. As we will see (Corollary 10), these are precisely those functions that have the Boolean sum or its negation as a
binary section.

In this paper we extend this study to pseudo-Boolean functions and show that these parameterized relaxations of
monotonicity are tightly related to the following lattice versions of partial derivatives. For f :Bn

→ R and k ∈ [n], let
∧k f :Bn

→ R and ∨k f :Bn
→ R be the partial lattice derivatives defined by

∧k f (x) = f (x0k) ∧ f (x1k) and ∨k f (x) = f (x0k) ∨ f (x1k).

The latter, known as the k-th join derivative of f , was proposed by Fadini [7] while the former, known as the k-th meet
derivative of f , was introduced by Thayse [16]. In [17] these lattice derivatives were shown to be related to so-called prime
implicants and implicates of Boolean functions which play an important role in the consensus method for Boolean and
pseudo-Boolean functions. For further background and applications see, e.g., [4,5,8,15,18].

Observe that, just like in the case of the partial derivative ∆kf , the k-th variable of each of the lattice derivatives ∧k f and
∨k f is inessential.

The following proposition assembles some basic properties of lattice derivatives.

Proposition 2. For any pseudo-Boolean functions f , g:Bn
→ R and j, k ∈ [n], j ≠ k, the following hold:

(i) ∧k ∧k f = ∧k f and ∨k ∨k f = ∨k f ;
(ii) if f ≤ g, then ∧k f ≤ ∧k g and ∨k f ≤ ∨k g;
(iii) ∧j ∧k f = ∧k ∧j f and ∨j ∨k f = ∨k ∨j f ;
(iv) ∨k ∧j f ≤ ∧j ∨k f .

1 Note that the terms ‘‘positive’’ and ‘‘nondecreasing’’ (resp. ‘‘negative’’ and ‘‘nonincreasing’’) are often used instead of isotone (resp. antitone), and it is
also customary to use the word ‘‘monotone’’ only for isotone functions.
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