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a b s t r a c t

In this paper, we study connected plane graphs with link component number equal to
the nullity and call them near-extremal graphs. We first study near-extremal graphs with
minimumdegree at least 3 andprove that a connected plane graphGwithminimumdegree
at least 3 is a near-extremal graph if and only if G is isomorphic to K4, the complete graph
with 4 vertices. The result is obtained by studying general graphs using the knowledge of
bicycle space and the Tutte polynomial. Then a simple algorithm is given to judge whether
a connected plane graph is a near-extremal graph or not. Finally we study the construction
of near-extremal graphs and prove that all near-extremal graphs can be constructed from
a loop and K4 by two graph operations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph. We denote by p(G), q(G) and k(G) numbers of vertices, edges and connected components of the graph
G, respectively. The nullity n(G) of the graph G is defined to be q(G) − p(G) + k(G). When G is a connected plane graph, n(G)
is equal to the number of bounded faces of the plane graph G by the well-known Euler formula.

Let TG(x, y) be the Tutte polynomial [15] of the graph G. Let

µ(G) = log2(|TG(−1, −1)|) + k(G).

We call µ(G) the link component number of the graph G, since when G is a plane graph, µ(G) is exactly the number of
components of the link corresponding to G via the classical medial construction. See [8,9,11,13].

In [7], the authors proved that 1 ≤ µ(G) ≤ n(G) + 1 for any connected plane graph G and characterized extremal graphs,
i.e connected plane graphs with µ(G) = n(G) + 1. A family of oriented links which correspond to extremal graphs was
once considered in [5]. Connected plane graphs with µ(G) = 1 (i.e. knot graphs) were studied forty years ago; see [14]. The
structure of such knot graphs was studied in [3]. The component number of links corresponding to some families of plane
graphs has been determined. See, for example, [10,12,6].

In this paper, we shall study connected plane graphs with µ(G) = n(G) and call them near-extremal graphs. We are
mainly interested in plane graphs because of its connection to alternating links. Note that different embeddings in the plane
of a planar graph may correspond to different alternating links with the same component numbers. See Fig. 1 for such an
example.

Let G1 and G2 be two graphs. We use G1 ∼= G2 to denote that G1 is isomorphic to G2. We first study near-extremal graphs
withminimumdegree at least 3 and prove that a connected plane graphGwithminimumdegree at least 3 is a near-extremal
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Fig. 1. Two different plane embeddings of a planar graph correspond to two different alternating links.

graph if and only if G ∼= K4, the complete graph with 4 vertices. The result is obtained by studying general graphs using the
knowledge of bicycle space and the Tutte polynomial [4]. Then a simple algorithm is given to judge whether a connected
plane graph is a near-extremal graph or not. Finally we study the construction of near-extremal graphs and show that all
near-extremal graphs can be constructed from a loop and K4 by two graph operations.

We point out that the components of the link formed from a plane graph correspond to the left–right paths (Petrie
circuits) of the plane graph, which play an important role in the design of CMOS VLSI circuits; see references cited in [16].

Throughout the paper, we denote by Cn the n-cycle. In particular, C1 is a loop. We denote by In the graph which consists
of two distinct vertices connected by n parallel edges. We use Kn to denote the complete graph with n vertices. Let G be a
graph and e be an edge of G. We use G− e and G/e to denote the graphs obtained from G by deleting and contracting (that is,
deleting the edge and identifying its ends) the edge e, respectively. We follow [2] for undefined terminology and notations.

2. Preliminary results

Let G be a general graph and let C(G) and C∗(G) be its cycle space and cut space respectively. Then its bicycle space B(G)
is defined to be C(G) ∩ C∗(G). Let b(G) denote the dimension of B(G). Then since the dimension of the cycle space is n(G)
(see [4]), we have the following.

Lemma 2.1. For any graph G, b(G) ≤ n(G).

We say that a general graph G is G-extremal if b(G) = n(G) and G-near-extremal if b(G) = n(G) − 1. Then G is extremal
if and only if G is G-extremal and a connected plane graph, and G is near-extremal if and only if G is G-near-extremal and a
connected plane graph.

Using the fact that b(G) = log2(|TG(−1, −1)|) = µ(G)− k(G) [13,11] and properties of the Tutte polynomial [1], we can
prove Lemmas 2.2–2.4. The proofs are similar to the proof of Theorem 4.1 in [11], so we omit the details here.

Lemma 2.2. Let Gi be a graph with vi ∈ V (Gi) for i = 1, 2. Let G be the graph obtained from G1 and G2 by identifying v1 and
v2. Then b(G) = b(G1) + b(G2). In particular,

(1) if e is a loop, then b(G) = b(G − e);
(2) if e is a bridge, then b(G) = b(G/e).

A pair of edges of G is called a parallel pair if the pair of edges has the same endvertices; a pair of edges of G is called a
series pair if it is not a parallel pair and both edges are incident with the same vertex of degree 2.

Lemma 2.3. Let G be a graph. Then:

(1) if e and f are a series pair of G, then b(G/e/f ) = b(G);
(2) if e and f are a parallel pair of G and f is not a bridge in G − e, then b(G − e − f ) = b(G).

Let G be a graph with a vertex v of degree 3, which has three distinct neighbors. Let H be the graph obtained from G by
deleting v and adding an edge between each pair of neighbors of v. We say that H is obtained from G by a Y∆-exchange and
conversely, G is obtained from H by a ∆Y -exchange.

Lemma 2.4. Suppose that G′ is obtained from G by either a Y∆ or a ∆Y exchange. Then b(G) = b(G′).

Lemma 2.5. If G has an odd cycle, then G is not G-extremal.
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