Trees with the seven smallest and eight greatest Harary indices ${ }^{\star}$

Kexiang Xu*
College of Science, Nanjing University of Aeronautics \mathcal{E} Astronautics, Nanjing, PR China

ARTICLE INFO

Article history:

Received 17 August 2010
Accepted 19 August 2011
Available online 7 October 2011

Keywords:

Tree
Harary index
Graph transformation

Abstract

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, we determined the first up to seventh smallest Harary indices of trees of order $n \geq 16$ and the first up to eighth greatest Harary indices of trees of order $n \geq 14$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Harary index of a graph G, denoted by $H(G)$, was been independently by Plavšićet al. [27] and by Ivanciuc et al. [20] in 1993. It was named in honor of Professor Frank Harary on the occasion of his 70th birthday. The Harary index is defined as follows:

$$
H=H(G)=\sum_{u, v \in V(G)} \frac{1}{d_{G}(u, v)}
$$

where the summation goes over all pairs of vertices of G and $d_{G}(u, v)$ denotes the distance of the two vertices u and v in the graph G (i.e., the number of edges in a shortest path connecting u and v). Mathematical properties and applications of H are reported in [4,8,9,24,34-37].

Another two related distance-based topological indices of the graph G are the Wiener index $W(G)$ and the hyper-Wiener index $W W(G)$. As an oldest topological index, the Wiener index of a (molecular) graph G, first introduced by Wiener [33] in 1947, was defined as

$$
W(G)=\sum_{u, v \in V(G)} d_{G}(u, v)
$$

with the summation going over all pairs of vertices of G. The hyper-Wiener index of G, first introduced by Randić [28] in 1993, is nowadays defined as [21]:

$$
W W(G)=\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)+\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)^{2} .
$$

Mathematical properties and applications of the Wiener index and hyper-Wiener index are extensively reported in the literature $[1,6,7,9,10,17,13,12,16,15,22,25,26,29-32,38]$.

[^0]Let $\gamma(G, k)$ be the number of vertex pairs of the graph G that are at distance k. Then

$$
\begin{equation*}
H(G)=\sum_{k \geq 1} \frac{1}{k} \gamma(G, k) . \tag{1.1}
\end{equation*}
$$

All graphs considered in this paper are finite and simple. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G)$, we denote by $N_{G}(v)$ the neighbors of v in $G . d_{G}(v)=\left|N_{G}(v)\right|$ is called the degree of v in G or is written as $d(v)$ for short. In particular, $\Delta=\Delta(G)$ is called the maximum degree of vertices of G. A vertex v of degree 1 is called a pendent vertex. An edge $e=u v$ incident with the pendent vertex v is a pendent edge. For a subset W of $V(G)$, let $G-W$ be the subgraph of G obtained by deleting the vertices of W and the edges incident with them. Similarly, for a subset E^{\prime} of $E(G)$, we denote by $G-E^{\prime}$ the subgraph of G obtained by deleting the edges of E^{\prime}. If $W=\{v\}$ and $E^{\prime}=\{x y\}$, the subgraphs $G-W$ and $G-E^{\prime}$ will be written as $G-v$ and $G-x y$ for short, respectively. The diameter of the graph G will be denoted by $D(G)$. In the following we denote by P_{n} and S_{n} the path graph and the star graph with n vertices, respectively. For other undefined notations and terminology from graph theory, the readers are referred to [2].

Let $\mathcal{T}(n)$ be the set of trees of order n. A molecular tree is a tree of maximum degree at most 4 . It models the skeleton of an acyclic molecule [31]. Gutman et al. [18] first gave a partial order to Wiener index among starlike trees. After then, Deng [5], Liu and Liu [23] determined the seventeenth Wiener indices of trees of order $n \geq 28$. And the trees with the first up to fifteenth smallest Wiener indices among trees of order n were determined by Guo and Dong [11]. Gutman [12] characterized the extremal (maximal and minimal) hyper-Wiener indices of trees in $\mathcal{T}(n)$ (they are attained at P_{n} and S_{n}, respectively). Very recently, Liu and Liu [22] determined the fifteenth greatest hyper-Wiener indices of trees in $\mathcal{T}(n)$ with $n \geq 20$ and the seventh smallest hyper-Wiener indices of trees in $\mathcal{T}(n)$ with $n \geq 17$. Das et al. [4] and Zhou et al. [37] gave some nice bounds of Harary index. In this paper we identify the first up to seventh smallest Harary indices of trees in \mathcal{T} (n) with $n \geq 16$, which are all molecular trees, and the first up to eighth greatest Harary indices of trees in $\mathcal{T}(n)$ with $n \geq 14$.

2. Some lemmas

In this section we list or prove some lemmas as basic but necessary preliminaries, which will be used in the subsequent proofs.

First, for a graph G with $v \in V(G)$, we define $Q_{G}(v)=\sum_{u \in V(G)} \frac{d_{G}(u, v)}{d_{G}(u, v)+1}$. For convenience, sometimes we write $Q_{G}(v)$ as $Q_{V(G)}(v)$. Note that the function $f(x)=\frac{x}{x+1}$ is strictly increasing for $x \geq 1$. Thus the lemma below follows immediately.

Lemma 2.1. Suppose that $P_{n}=v_{1} v_{2} \cdots v_{n}$ is a path where the vertices v_{i} and v_{i+1} are adjacent for $i=1,2,3, \ldots, n-1$. Then we have
(1) $Q_{P_{n}}\left(v_{j}\right)=Q_{P_{n}}\left(v_{n-j}\right)$ for $1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$;
(2) $Q_{P_{n}}\left(v_{j}\right)>Q_{P_{n}}\left(v_{j+1}\right)$ for $1 \leq j \leq\left[\frac{n}{2}\right]$;
(3) $Q_{P_{n}}\left(v_{j}\right)>Q_{P_{n}}\left(v_{n-k}\right)$ for $1 \leq j<k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Lemma 2.2. Let G be a graph of order n and v be a pendent vertex of G with $u v \in E(G)$. Then we have $H(G)=H(G-v)+n-$ $1-Q_{G-v}(u)$.
Proof. By the definitions of Harary index and $Q_{G}(u)$, we have

$$
\begin{aligned}
H(G) & =\sum_{u, v \in V(G-v)} \frac{1}{d_{G}(u, v)}+\sum_{x \in V(G-v)} \frac{1}{d_{G}(x, v)} \\
& =H(G-v)+\sum_{x \in V(G-v)} \frac{1}{d_{G}(x, u)+1} \\
& =H(G-v)+\sum_{x \in V(G-v)}\left(1-\frac{d_{G}(x, u)}{d_{G}(x, u)+1}\right) \\
& =H(G-v)+n-1-Q_{G-v}(u),
\end{aligned}
$$

completing the proof of the lemma.
Corollary 2.1. Let G_{1} and G_{2} be two graphs of same order and with v_{i} as a pendent vertex of G_{i} and $u_{i} v_{i} \in E\left(G_{i}\right)$ for $i=1$, 2. If $H\left(G_{2}-v_{2}\right) \geq H\left(G_{1}-v_{1}\right)$ and $Q_{G_{1}-v_{1}}\left(u_{1}\right) \geq Q_{G_{2}-v_{2}}\left(u_{2}\right)$, then $H\left(G_{2}\right) \geq H\left(G_{1}\right)$ with the equality holding if and only if the above two equalities hold simultaneously.

Let G be a graph with $v \in V(G)$. As shown in Fig. 1, for two integers $m \geq k \geq 1$, let $G_{k, m}$ be the graph obtained from G by attaching at v two new paths $P: v\left(=v_{0}\right) v_{1} v_{2} \cdots v_{k}$ and $Q: v\left(=u_{0}\right) u_{1} u_{2} \cdots u_{m}$ of lengths k and m, where $v_{1}, v_{2}, \ldots, v_{k}$ and $u_{1}, u_{2}, \ldots, u_{m}$ are distinct new vertices. Suppose that $G_{k-1, m+1}=G_{k, m}-v_{k-1} v_{k}+u_{m} v_{k}$. A related graph transformation is given in the following lemma.

Lemma 2.3. Let $G \neq K_{1}$ be a connected graph of order n and $v \in V(G)$. If $m \geq k \geq 1$, then $H\left(G_{k, m}\right)>H\left(G_{k-1, m+1}\right)$.

https://daneshyari.com/en/article/419462

Download Persian Version:
https://daneshyari.com/article/419462

Daneshyari.com

[^0]: The author is supported by NUAA Research Funding, No. NS2010205.

 * Fax: +86 2552113704.

 E-mail address: xukexiang0922@yahoo.cn.

