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a b s t r a c t

For a set system M = (Mv)v∈V indexed by the elements of a finite set V , the intersection
betweennessB(M) induced byM consists of all triples (u, v, w) ∈ V 3 withMu∩Mw ⊆ Mv .
Similarly, the strict intersection betweenness Bs(M) induced by M consists of all triples
(u, v, w) ∈ B(M) such that u, v, and w are pairwise distinct. The notion of a strict
intersection betweenness was introduced by Burigana [L. Burigana, Tree representations
of betweenness relations defined by intersection and inclusion, Math. Soc. Sci. 185
(2009) 5–36]. We provide axiomatic characterizations of intersection betweennesses and
strict intersection betweennesses. Our results yield a simple and efficient algorithm that
constructs a representing set system for a given (strict) intersection betweenness. We
study graphs whose strict shortest path betweenness is a strict intersection betweenness.
Finally, we explain how the algorithmic problem related to Burigana’s notion of a partial
tree representation can be solved efficiently using well-known algorithms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study so-called betweennesses induced by graphs as well as set systems. Betweennesses capture and
generalize in an abstract way natural geometric properties of points in Rn, and the axiomatic study of betweenness as a
mathematical concept goes back to Huntington and Kline [13] in 1917. Algorithmic problems related to betweennesses have
been studied as relaxations of ordinal embeddings [1,14,12] and occur for instance in psychometrics [3] and as arrangement
problems in molecular biology [6,10]. For such betweenness problems, several strong hardness results have been obtained
[5,18,4] and only a few positive results are known [5,12,15].

We consider finite, simple, and undirected graphs as well as finite set systems defined over finite ground sets. Let G be a
graph. The vertex set of G is denoted by V (G) and the edge set of G is denoted by E(G). For a vertex u of G, the neighbourhood
NG(u) in G equals {v ∈ V (G) | uv ∈ E(G)} and the degree dG(u) in G equals |NG(u)|. A path P of length l in G between two
vertices v0 and vl of G is a sequence P:v0v1 . . . vl of l + 1 distinct vertices v0, v1, . . . , vl ∈ V (G) such that vi−1vi ∈ E(G) for
1 ≤ i ≤ l. The distance distG(u, v) in G between two vertices u and v of G is the minimum length of a path in G between
u and v. A cycle C of length l in G is a sequence C :v1v2 . . . vlv1 such that v1v2 . . . vl is a path in G and v1vl ∈ E(G). For a
finite set V , V 3 denotes the set of all ordered triples of elements of V . A triple (u, v, w) ∈ V 3 is called strict if u, v, and w are
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pairwise distinct. Let V 3
s denote the set of all strict triples in V 3. For k ∈ N0, let


V
k


denote the set of all subsets of V that

are of cardinality k.
For a graph G, the shortest path betweenness B(G) of G consists of all triples (u, v, w) ∈ V (G)3 such that v lies on

a shortest path in G between u and w, or equivalently (u, v, w) ∈ V (G)3 belongs to B(G) if and only if distG(u, w) =
distG(u, v) + distG(v, w) < ∞. The strict shortest path betweenness Bs(G) of G consists of all strict triples in B(G),
i.e. Bs(G) = B(G) ∩ V (G)3s . Shortest path betweennesses are a special case of betweennesses induced by metrics, which
were first studied by Menger in 1928 [17]. The shortest path betweennesses of trees have received special attention, and
several different axiomatic characterizations have been proposed [3,7,19,20]. For a tree/forest T , we call B(T ) the tree/forest
betweenness of T and Bs(T ) the strict tree/forest betweenness of T .

In [3], Burigana introduces a betweenness notion derived from set systems. For a set system M = (Mv)v∈V indexed by
the elements of a finite set V , the intersection betweenness B(M) induced by M consists of all triples (u, v, w) ∈ V 3 with
Mu ∩Mw ⊆ Mv , and the strict intersection betweenness Bs(M) induced by M consists of all strict triples (u, v, w) ∈ V 3

s with
Mu ∩Mw ⊆ Mv , i.e.

B(M) = {(u, v, w) ∈ V 3
| Mu ∩Mw ⊆ Mv}

Bs(M) = B(M) ∩ V 3
s = {(u, v, w) ∈ V 3

s | Mu ∩Mw ⊆ Mv}.

For every finite set V , a set B ⊆ V 3 is an intersection betweenness if there is some set system M with B = B(M). Similarly,
a set B ⊆ V 3

s is a strict intersection betweenness if there is some set system M with B = Bs(M).
Burigana provides some axioms for strict intersection betweennesses. Furthermore, he characterizes the two classes

of strict intersection betweennesses that coincide with some strict tree betweenness (betweennesses with a full tree
representation), and that contain some strict tree betweenness (betweennesses with a partial tree representation). A central
problem left open in [3] is the (axiomatic) characterization of (strict) intersection betweennesses. Furthermore, the
procedure proposed in [3] for the solution of the partial tree representation problem does not lead to an efficient algorithm.

Our results are as follows. In Section 2, we provide axiomatic characterizations of intersection betweennesses and
strict intersection betweennesses thus solving the problem left open in [3]. Furthermore, our results yield a simple and
efficient algorithm that constructs a representing set system for a given (strict) intersection betweenness. In Section 3, we
characterize those graphs whose strict shortest path betweenness is a strict intersection betweenness. Furthermore, we
describe representations of strict tree betweennesses as strict intersection betweennesses of set systems over small ground
sets. Finally, in Section 4, we explain how the algorithmic problem related to Burigana’s partial tree representation can be
solved efficiently using well-known algorithms.

2. Characterizing and representing intersection betweennesses

Burigana [3] provides the following three axioms, which he claims to hold for every strict intersection betweenness B.

(I1) ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (w, v, u) ∈ B.
(I2) ∀u, v, w, z ∈ V : (u, v, w), (u, z, v) ∈ B ⇒ (u, z, w) ∈ B.
(I3) ∀u, v, w, t, z ∈ V : (t, u, z), (t, w, z), (u, v, w) ∈ B ⇒ (t, v, z) ∈ B.

These three axioms clearly hold for every intersection betweenness because of elementary properties of set intersection and
inclusion. Furthermore, (I1) also holds for every strict intersection betweenness. Contrary to Burigana’s claim, the properties
(I2) and (I3) are actually problematic for strict intersection betweennesses because they potentially imply the presence of
non-strict triples. In order to ensure that the triple (u, z, w), whose existence is guaranteed by (I2), is strict, one has to add
the conditionw ≠ z. Similarly, in order to ensure that the triple (t, v, z), whose existence is guaranteed by (I3), is strict, one
has to add the condition t ≠ v ≠ z. This leads to the following modified versions of (I2) and (I3).

(Is2) ∀u, v, w, z ∈ V : (u, v, w), (u, z, v) ∈ B and w ≠ z ⇒ (u, z, w) ∈ B.
(Is3) ∀u, v, w, t, z ∈ V : (t, u, z), (t, w, z), (u, v, w) ∈ B and t ≠ v ≠ z ⇒ (t, v, z) ∈ B.

While strict intersection betweennesses can be empty, intersection betweennesses always contain all triples of the form
(u, u, w) and (u, w,w). Therefore, they necessarily satisfy another property.

(I4) ∀u, w ∈ V : (u, u, w) ∈ B.

Note that (I4) together with (I3) actually implies (I2) by choosing t = u in (I3).
We now show that the above axioms yield characterizations of intersection betweennesses and strict intersection

betweennesses. Furthermore, we also prove that there are always representing set systems over quadratic ground sets,
which can be constructed efficiently.

Theorem 1. Let V be a finite set and let B ⊆ V 3.

(i) If there is a set system M = (Mv)v∈V with B = B(M), then B satisfies (I1), (I3), and (I4).
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