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a b s t r a c t

For a graph G and its complement Ḡ, we define the graph coloring polytope P(G) to be the
convex hull of the incidence vectors of star partitions of Ḡ. We examine inequalities whose
support graphs are webs and antiwebs appearing as induced subgraphs in G. We show that
for an antiweb W̄ in G the corresponding inequality is facet-inducing for P(G) if and only
if W̄ is critical with respect to vertex colorings. An analogous result is also proved for the
web inequalities.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The chromatic number χ(G) of a graphG is theminimumnumber of colors that can be assigned to the vertices of G in such
a way that no two adjacent vertices share the same color. Let Ḡ = (V , Ē) denote the complement of the graph G = (V , E).
We relate to cliques in Ḡ the graphs called stars. A star is a tree S with vertex set {v1, . . . , vt}, t ⩾ 1, and, provided t > 1,
with the nonempty edge set {(v1, vi) | i = 2, . . . , t}. We denote by c(S) = v1 the center vertex of the star S. By a star
partition of Ḡ we will understand a collection Π of stars Si = (Vi, Ei), i = 1, . . . , l, such that Vi ∩ Vj = ∅ for each pair
i, j, i ≠ j, ∪l

i=1 Vi = V , and Vi for each i ∈ {1, . . . , l} is a clique in Ḡ. To a coloring of G, we can associate a star partition of
Ḡ. In this paper, we will assume that V is a set of integers treated as unique identifiers assigned to the vertices of G. We say
that a star partitionΠ is admissible if, for each star Si = (Vi, Ei) inΠ , c(Si) = minj∈Vi j. There is a one-to-one correspondence
between colorings ofG and admissible star partitions of Ḡ. In [16], we used this relation to define the graph coloring polytope
P(G) = conv{x(Π) | Π ∈ Ψ (Ḡ)}, whereΨ (Ḡ) is the set of all admissible star partitions of Ḡ and x(Π) = (xij(Π) | (i, j) ∈ Ē)
is the incidence vector of Π , i.e., 0–1 vector with xij(Π) = 1 if and only if (i, j) ∈ Ek for some star Sk in Π .

Several different graph coloring polytopes have been studied by other authors. Coll et al. [5] and Méndez Díaz and
Zabala [13] considered polytopes in the space of n2 binary variables representing all combinations of vertices of an n-vertex
graph and n possible colors to color them as well as n extra variables needed to represent colors. Figueiredo et al. [10]
introduced the graph coloring polytope associated with a model relating acyclic orientations of a graph to its chromatic
number. Campêlo et al. [3] studied the polytope arising from the asymmetric representatives formulation of the graph
coloring problem. Cornaz [6,7] investigated the polytope defined as the convex hull of the incidence vectors of the clique-
connecting forests of G. Optimizing a certain linear function over the clique-connecting forest polytope is equivalent to
determining the chromatic number of the graph. In [7], Cornaz derived a class of nontrivial facet-inducing inequalities for
this polytope. Recently, Hansen et al. [12] presented polyhedral results for the graph coloring problem, whichwere obtained
using general set packing and set covering polytopes.
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Fig. 1. Left: webW 3
10; right: antiweb W̄ 3

10 .

As is already known [16], our definition of a graph coloring polytope allows us to easily uncover the inherent relationship
between graph coloring and finding a maximum independent (stable) set in a graph. To see this, let T = {(i, j, k) | i <
min{j, k} and {i, j, k} forms a triangle in Ḡ}, Z = {(i, j, k) | (i, j), (j, k) ∈ Ē, (i, k) ∉ Ē}. For a star partition Π ∈ Ψ (Ḡ), its
incidence vector x = x(Π) satisfies the following inequalities

xij + xjk ⩽ 1 for all (i, j, k) ∈ T ∪ Z . (1)

Each binary vector satisfying (1) defines an independent set in the graph HG = (V (H), E(H)) with vertices vij ∈ V (H)

corresponding to (i, j) ∈ Ē and edges (vij, vjk) ∈ E(H) corresponding to (i, j), (j, k) ∈ Ē such that (i, j, k) ∈ T ∪ Z . Essentially
the same reduction from graph coloring to the maximum stable set problem was independently discovered by Cornaz and
Jost [6,8]. They consider the relationship between colorings of G and stellar forests of Ḡ and construct a graph that coincides
with the graph HG defined above. Let α(G) denote the stability number of a graph G. In [16] and independently in [6,8], the
following result is shown.

Theorem 1. For a simple n-vertex graph G, χ(G) + α(HG) = n.

Thus the graph G can be optimally colored by way of finding a maximum independent set in the graph HG. The latter
problem belongs to the famous class of quadratic pseudo-Boolean optimization problems [2].

Using (1), the polytope P(G) can bewritten as P(G) = conv{x = (xij), (i, j) ∈ Ē | x is binary and satisfies (1) }. Let Pstable(G)
denote the stable set polytope of a graph G, that is, the convex hull of the incidence vectors of the independent (stable) sets of
G. From the above reformulation of P(G), it follows that P(G) = Pstable(HG). Thus, a set of valid and facet-inducing inequalities
for Pstable(HG) provides a (partial) linear description of the polytope P(G). In the literature, such inequalities for Pstable(G)
typically are defined in terms of subgraphs of G that are isomorphic to quite simple well-structured graphs like complete
graphs, odd holes, odd antiholes, wheels, webs and antiwebs. In the case of HG, the vertices of such subgraphs correspond to
edges of Ḡ. However, of far greater interest is that the subgraphs producing valid inequalities for P(G) are to be taken from
G (or Ḡ), and not from HG. Several classes of facet-inducing inequalities for P(G) were presented in [17]. These inequalities
are derived from independent sets, odd holes, odd wheels, and odd antiholes in Ḡ. The relation between graph coloring and
stable set polytopes was also investigated in [6,7]. In particular, in [7] it is shown that the nontrivial and nondegenerate
facets of the stable set polytope are facets of the clique-connecting forest polytope.

In this note, the focus is on webs and antiwebs considered as subgraphs of G. Both webs and antiwebs received a
considerable amount of attention in the literature dealing with the stable set polytopes. Some recent papers on this topic
include [1,4,9,11,14,15,18–20]. In the present work, we show that, under certain conditions, antiwebs (Section 2) and webs
(Section 3) in G give rise to facets of the graph coloring polytope P(G).

We conclude the introduction with a few notations. For a graph G and its vertex u, we denote by Nu(G) the neighborhood
of u. We let S(U) stand for the star corresponding to the clique U ⊂ V . The center vertex of S(U) is uniquely determined: it
is the vertex u ∈ U such that u < v for each v ∈ U \ {u}. Given a star partition Π , we will write E(Π) for the union of the
edge sets of all stars in Π . For an inequality

∑
(i,j)∈Ē bijxij ⩽ b0, we will assume that the order of the subscripts of b does not

matter, i.e., bij and bji refer to the same coefficient.

2. Antiweb inequalities

Let m and p be integers satisfying p ⩾ 2 and m ⩾ 2p + 1. As defined by Trotter [21], the web W p
m = (V (W ), E(W )) is a

graph with the vertex set V (W ) = {v1, . . . , vm} and the edge set E(W ) = {(vi, vj) | vi, vj ∈ V (W ) and p ⩽ |i − j| ⩽ m − p}.
An example of the web is shown in Fig. 1, where vi = i, i = 1, . . . ,m. The antiweb W̄ p

m = (V (W ), E(W̄ )) is the complement
of the webW p

m (see Fig. 1).
Before addressing antiweb-based facets of P(G), we state the following simple fact.
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