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a b s t r a c t

The geodesic interval function I of a connected graph allows an axiomatic characterization
involving axioms on the function only, without any reference to distance, as was shown
by Nebeský [20]. Surprisingly, Nebeský [23] showed that, if no further restrictions are
imposed, the induced path function J of a connected graph G does not allow such an
axiomatic characterization. Here J(u, v) consists of the set of vertices lying on the induced
paths between u and v. This function is a special instance of a transit function. In this paper
we address the question what kind of restrictions could be imposed to obtain axiomatic
characterizations of J . The function J satisfies betweenness if w ∈ J(u, v), with w 6= u,
implies u 6∈ J(w, v) and x ∈ J(u, v) implies J(u, x) ⊆ J(u, v). It is monotone if x, y ∈ J(u, v)
implies J(x, y) ⊆ J(u, v). In the case where we restrict ourselves to functions J that satisfy
betweenness, or monotonicity, we are able to provide such axiomatic characterizations
of J by transit axioms only. The graphs involved can all be characterized by forbidden
subgraphs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In [18] the notion of transit function is introduced as a means to study how to move around in discrete structures.
Basically, it is a function satisfying three simple axioms on a set V , which is provided with a structure σ . Prime examples
of such structures are: a set of edges E, so that we are considering a graph G = (V , E), or a partial ordering ≤, so that we
are considering a partially ordered set (V ,≤). The idea is to study transit functions that have additional properties defined
in terms of the structure σ . For instance, the transit function may be defined in terms of paths in the graph G = (V , E).
Such transit functions are called path transit functions on G in [18]. A prime example is the geodesic interval function
I : V × V → 2V of a connected graph G, where I(u, v) is the set of vertices lying on the shortest paths between u and
v. This function has been widely studied from many different perspectives, to name a few: convexity, see e.g. [10,17,29],
medians, see e.g. [14,17], monotonicity, see e.g. [15,17,24]. For the induced path function J : V × V → 2V of a connected
graph G, where J(u, v) is the set of vertices lying on the induced paths between u and v, similar questions and problems
have been studied: convexity, see e.g. [4,9,11,13,16], median-type properties, see [16], monotonicity, see e.g. [3–5]. This
exemplifies the basic idea for introducing the concept of transit function in [18]: transfer ideas, questions and problems
from one transit function to another and see whether interesting problems arise. This was the motivation to study the
analogues of these questions for the all-paths function A on a graph: now A(u, v) consists of the vertices on the u, v-paths,
see [2]. The convexity related to the all-paths functionwas already studiedmuch earlier, see e.g. [8,26]. Note that any transit
function has an associated convexity. Such convexities are called interval convexities in [1,29]. Those related to path transit
functions are discussed in more detail in [6].
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Fig. 1. A: house, B: domino, C: P-graph.

In [20–22] Nebeský obtained some quite interesting results, see also [19]. He characterized the functions that are the
geodesic interval function of some graph without any reference to the notion of distance. That is, a function I : V ×V → 2V
is the geodesic interval function of some connected graph if and only if I satisfies a set of axioms that are phrased in terms of
I only. This immediately poses the problem for other transit functions on graphs: can they be characterized in terms of such
transit axioms only? For the all-paths function A this was done in [2]. Surprisingly, such a characterization of the induced
path function J is not possible, as was shown by Nebeský in [23] using first order logic. This poses the problem whether it
is still possible to characterize the induced path function if some further restrictions are imposed, or if the graph satisfies
some extra properties.
The aim of this paper is to study special cases, in which J can indeed be characterized by transit axioms only. Then one

searches for the appropriate properties of the graphs and the appropriate transit axioms for J . These cases are where J has
the properties of a betweenness, and where J is monotone, that is, all sets J(u, v) are J-convex. As one might expect, the
characterizations we seek for J in this paper involve forbidden (induced) subgraphs for the graphs. Themost important ones
are the house, the domino and the P-graph, see Fig. 1, and the holes. Here a hole, or a long cycle, is a cycle with at least 5
vertices. The so-called HHD-free graphs and HHP-free graphs that appear over and over below also have other interesting
aspects. HereH stands for house or hole,D for domino, and P for P-graph. These classes of graphs have important applications
as far as elimination orderings in graphs are concerned. HHD-free and HHP-free graphs are natural generalizations of the
class of chordal graphs in connection with the lexicographic breadth first search (LexBFS) and maximum cardinality search
(MCS) orderings in graphs, see [25,28]. In [7], using a relaxation of the induced path convexity known as m3-convexity,
it is proved that graphs, for which LexBFS (MCS) is a semi-simplicial ordering, constitute precisely the class of HHD-free
(HHP-free) graphs. See also [12].
The paper is organized as follows. In Section 2 we give the definition of transit function, betweenness and monotonicity,

and introduce five new axioms for the characterization of the induced path function J in terms of these transit axioms. Each
of these new axioms captures some aspect of the idea of betweenness that is exemplified in the geodesic interval function.
Moreover we prove some first results involving J and betweenness and monotonicity. In Section 4 we prove our main
results, viz. Theorems 2 and 3: a transit function that is a betweenness and satisfies in addition some of the five new axioms
necessarily is the induced path function of some connected graph. Using the above characterizations, we also characterize
the classes of HHD-free and HHP-free graphs by the induced path function.

2. Transit functions and betweenness

In this sectionwe collect the necessary terminology on transit functions and betweenness and establish some first results.
A graph is said to be HHD-free if it does not contain a house, a hole or a domino as an induced subgraph. It is called HHP-free
if it does not contain a house, a hole or a P-graph as induced subgraph. A hole is a cycle of length at least 5, for the other
graphs see Fig. 1.
Let V be a finite set. A transit function on V is a function R : V × V :→ 2V satisfying the following three axioms:

(t1) u ∈ R(u, v), for any u and v in V ,
(t2) R(u, v) = R(v, u), for all u and v in V ,
(t3) R(u, u) = {u}, for all u in V .

A subsetW of V is R-convex if R(u, v) ⊆ W , for any two vertices u, v inW . If, moreover, G = (V , E) is a graphwith vertex
set V , then we say that R is a transit function on G. Note that the above axioms do not reflect any aspect of the graph G. But
our interest will be in transit functions that are defined in terms of the graph. Then the challenge is whether these graphical
properties of the transit function can be characterized by transit axioms that are in terms of the transit function only.
The underlying graph GR of a transit function R is the graph with vertex set V , where two distinct vertices u and v are

joined by an edge if and only if R(u, v) = {u, v}. Note that, in general, G and GR will not be isomorphic graphs. Transit
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