Letter to the Editor

The Development of A Fluorescence Polarization Immunoassay for Aflatoxin Detection*

SHENG Ya Jie¹, EREMIN Sergei², MI Tie Jun¹, ZHANG Su Xia¹, SHEN Jian Zhong¹, and WANG Zhan Hui^{1,#}

A fluorescence polarization immunoassay (FPIA) was developed for the analysis ofaflatoxins (AFs) using an anti-aflatoxin B₁ (AFB₁) monoclonal antibody and a novel fluorescein-labeled AFB₁ tracer. The FPIA showed an IC₅₀ value of 23.33 ng/mL with a limit of detection of 13.12 ng/mL for AFB₁. The cross-reactivities of AFB₁, AFB₂, AFG₁, AFG₂, AFM₁, and AFM₂ with the antibody were 100%, 65.7%, 143%, 23.5%, 111.4%, and 2%, respectively. The group-specificity of anti-AFB₁mAb indicated that the FPIA could potentially be used in a screening method for the detection of total AFs, albeit not AFG2 and AFM2. The total time required for analyzing 96 samples in one microplate was less than 5 min. This study demonstrates the potential usefulness of the FPIA as a rapid and simple technique for monitoring AFs.

Aflatoxins (AFs) are a group of toxic secondary metabolites that are mainly produced Aspergillusflavusand A. parasiticus^[1]. The four most important are AFB₁, AFB₂, AFG₁, and AFG₂ (Figure 1), which are often found in different types of matrices, such as maize, peanuts, cottonseed, fruit, and meat^[2]. Of those compounds, AFB₁ and AFB₂ are the most commonly occurring. The hydroxylated forms of AFB₁ and AFB₂ are AFM₁ and AFM₂, respectively, which can sometimes be found in milk and dairy products. These compounds are generated when AFB₁ and AFB₂ are ingested from contaminated feed and metabolized into AFM1 and AFM2. Because of the widespread occurrence of AF-producing fungi and the occurrence of the AFs in a number of agricultural commodities, robust efforts have been made to develop new methods for AF detection^[3-4]. The fluorescence polarization immunoassay (FPIA) is a homogeneous method that reaches equilibrium in minutes or even seconds, and involves no separation

or washing steps. The principles and applications of FPIA to the detection of chemical contaminants in food have been reviewed previously^[5]. FPIA is more suitable for use in the high-throughput screening of large numbers of samples than the conventional enzyme-linked immunosorbent assay (ELISA) method. To date, many FPIAs have been developed for the detection of food contaminants, the majority of which are pesticides^[6-7]. However, few applications of FPIA for detecting mycotoxins have been reported, because of the unavailability fluorescein-labeled mycotoxin tracers. Only Nasir and Jolley have previously reported on the use of FPIA for detecting AFs by a method that used of a tracer derived from AFB₁ and fluoresceinamine (isomers I and II)[8]. In this study, we report the synthesis of a novel AFB₁ tracer and describe our preliminary efforts towards developing a FPIA for the detection of AFB₁.

We developed a novel synthesis of the AFB₁ derivative (Figure 2). We added 20 mg (60 µmol) Carboxymethoxylamine (CMO,) 10 mg (30 µmol), and 5 mL pyridine to a round-bottom flask and maintained it for 24 h at room temperature. The pyridine was evaporated in a rotary evaporator at 50 °C, and the remaining 2 mL yellow-brown oil product was dissolved in 10 mL pure water. We added 0.1 mol/L NaOH (about 5 mL) drop-wise to adjust the solution to pH=8.0, completely dissolving the product. To this solution, 2×5 mL benzene was added to separate the organic and aqueous phases. The aqueous phase was acidified with 5 mol/L HCl to pH=2, anda white-brown precipitate formed. Then, the compound was extracted with ethyl acetate (3×20 mL) and then dried with 2 g anhydrous Na₂SO₄. The organic fraction was filtered through Whatman No. 1 filter paper. The solvent was evaporated and

doi: 10.3967/bes2014.027

^{1.} Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; 2. Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 109807, Russia

Aflatoxin
$$B_1$$
 (AFB₂)

Aflatoxin G_2 (AFG₂)

Aflatoxin M_2 (AFM₂)

Figure 1. The chemical structures of the aflatoxins: AFB₁, AFB₂, AFG₁, AFG₂, AFM₁, and AFM₂.

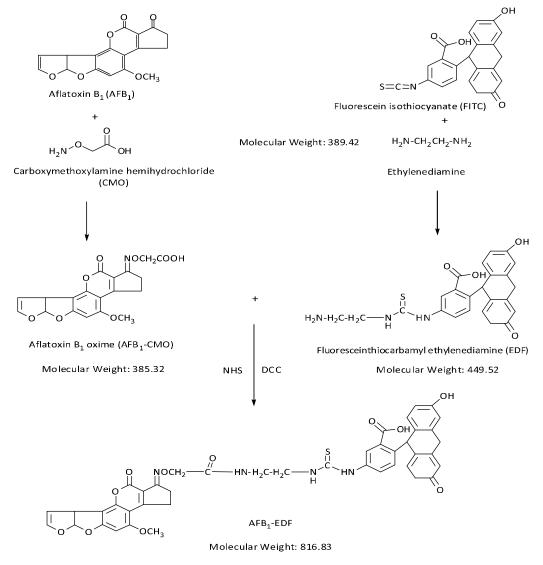


Figure 2. The chemical synthesis of AFB₁-EDF from AFB₁ and EDF.

Download English Version:

https://daneshyari.com/en/article/4195896

Download Persian Version:

https://daneshyari.com/article/4195896

<u>Daneshyari.com</u>