Original Article

Expression and Characterization of ArgR, An Arginine Regulatory Protein in *Corynebacterium crenatum**

CHEN Xue Lan¹, ZHANG Bin¹, TANG Li¹, JIAO Hai Tao¹, XU Heng Yi², XU Feng², XU Hong³, WEI Hua², and XIONG Yong Hua^{2,#}

1. Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; 2. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; 3. Ocean NanoTech, LLC, Springdale, AR72764, USA

Abstract

Objective Corynebacterium crenatum MT, a mutant from *C. crenatum* AS 1.542 with a lethal *argR* gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in *C. crenatum*, an intact *argR* gene from wild-type AS 1.542 was introduced into *C. crenatum* MT, resulting in *C. crenatum* MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain.

Methods Quantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the *argCJBDF*, *argGH*, and *carAB* promoter regions, and arginine production was determined with an automated amino acid analyzer.

Results Arginine production assays showed a 69.9% reduction in arginine from 9.01±0.22 mg/mL in *C. crenatum* MT to 2.71±0.13 mg/mL (*P*<0.05) in *C. crenatum* MT. sp. The *argC*, *argB*, *argD*, *argF*, *argJ*, *argG*, and *carA* genes were down-regulated significantly in *C. crenatum* MT. sp compared with those in its parental *C. crenatum* MT strain. The electrophoretic mobility shift assays showed that the promoter regions were directly bound to the ArgR protein.

Conclusion The arginine biosynthetic genes in *C. crenatum* are clearly controlled by the negative regulator ArgR, and intact ArgR in *C. crenatum* MT results in a significant descrease in arginine production.

Key words: *Corynebacterium crenatum*; ArgR protein; Arginine biosynthetic genes; Real-time PCR; Electrophoretic mobility shift assay

Biomed Environ Sci, 2014; 27(6): 436-443 doi: 10.3967/bes2014.072 ISSN: 0895-3988

www.besjournal.com (full text) CN: 11-2816/Q Copyright ©2014 by China CDC

INTRODUCTION

 -arginine (L-Arg), a semi-essential amino acid, has recently attracted considerable
attention because of its ability to facilitate the synthesis of various immune active materials for preventing the growth of cancer cells^[1], promoting urine circulation, and reducing the ammonia content in blood^[2]. As a nitric oxide precursor, L-Arg also has a function in relaxing and dilating blood vessels^[3].

Received: May 7, 2013; Accepted: August 12, 2013

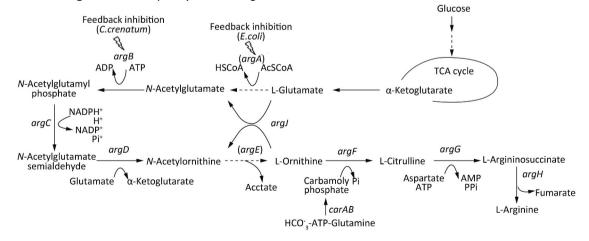
This work was supported by Natural Science Foundation of China, No. 1360219 and No. 30960012.

[&]quot;Correspondence should be address to XIONG Yong Hua, Professor. Tel: 86-791-88182405, Fax: 86-791-88333708, E-mail: yhxiongchen@163.com

Biographical note of the first author: CHEN Xue Lan, female, born in 1970, PhD, associate professor, majoring in biochemistry and molecualr biology.

Therefore, L-Arg is widely used as an additive in the food and pharmaceutical industries.

Corynebacterium crenatum AS 1.542 is a Gram-positive bacterium isolated from soil^[4]. Its mutants are widely exploited in the large-scale production of many amino acids, including L-glutamic acid, L-lysine, L-valine, and so on. In our previous work, we successfully obtained a high-yield strain (C. crenatum MT) via mutagenesis screening using nitrosoguanidine. This strain was found to possess a greatly enhanced L-Arg-producing ability compared with the wild-type AS 1.542 strain. The L-Arg yield increased from 0 mg/mL to 9.01±0.22 mg/mL. A point mutation was found in the regulator argR gene in C. crenatum MT: a C-to-T exchange at position 109 in argR, leading to an amino acid replacement of Gln-37 (CAG) by a terminator codon (TAG) and thus a truncated ArgR protein.


ArgR is considered as a regulator in the L-Arg biosynthetic pathway (Figure 1)^[4-5]. For example, ArgR cooperating with L-Arg in Escherichia coli inhibits the transcription of genes participating in L-Arg biosynthesis at different levels and activates the L-Arg degradation pathway^[6]. It also has an important function in regulating arginine-inducible uptake of L-Arg and ornithine metabolism in Pseudomonas aeruginosa under aerobic conditions. ArgR activates the aotJQMOPargR operon encoding a protein complex for L-Arg and ornithine uptake. ArgR is also a repressor of three operons (argF, carAB, and argG) in L-Arg biosynthesis and two operons (gltBD and gdhA) in glutamate biosynthesis^[7-8]. The mRNA amounts of argCJBDFR and argGH are reportedly 10 to 44 times higher in a Streptomyces clavuligerus argR-disrupted mutant than in the wild type, confirming the existence of an ArgR-mediated gene regulation in L-Arg biosynthesis^[9]. These results indicate that the ArgR protein is a vital and multifunctional regulator in L-Arg metabolism.

Xu et al. reported that overepression of the arginine biosynthetic argC-H cluster from C. crenatum with a lethal argR gene could improve the production of L-Arg. However, the characterization of argR had not been elaborated in detail^[10]. This study aims to elucidate further the function of ArgR in L-Arg biosynthesis in C. crenatum and to provide basis for the future genetic engineering of L-Arg-producing bacterial strains. Our study focuses on characterizing the C. crenatum ArgR protein and its role in the transcriptional regulation of L-Arg biosynthetic gene expression in C. crenatum by reconstructing the wild-type argR gene in C. crenatum MT.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Media

The bacterial strains and plasmids used in this work were described in Table 1. LB medium was used for cultivation of *E. coli* DH5 α and BL21 (DE3) strains. Seed medium (per liter) for cultivation of *C. crenatum* consisted of 30 g glucose, 20 g cornsteep liquor, 20 g (NH₄)₂SO₄, 1 g KH₂PO₄, 0.5 g MgSO₄·7H₂O, and 1.5 g urea. Fermentation medium (per liter) for L-Arg production was composed of 120 g glucose, 40 g cornsteep liquor, 20 g (NH₄)₂SO₄, 1.5 g KH₂PO₄, 0.5 g MgSO₄·7H₂O, 0.02 g FeSO₄·7H₂O, 0.05 g MnSO₄·2H₂O, 8×10⁻⁵ g biotin, 5×10⁻⁴ g histidine, and 30 g CaCO₃.

Figure 1. Illustration of the arginine biosynthetic pathway. The difference between the linear pathway and the cycle pathway is that the *argE* gene encodes acetylornithine deacetylase in the linear pathway, whereas the *argJ* gene encodes acetylornithine transferase in the circular pathway.

Download English Version:

https://daneshyari.com/en/article/4196060

Download Persian Version:

https://daneshyari.com/article/4196060

<u>Daneshyari.com</u>