

Contents lists available at SciVerse ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam



# Equality in a linear Vizing-like relation that relates the size and total domination number of a graph



Michael A. Henning, Ernst J. Joubert\*

Department of Mathematics, University of Johannesburg, Auckland Park 2006, South Africa

#### ARTICLE INFO

Article history:
Received 12 January 2012
Received in revised form 14 March 2013
Accepted 15 March 2013
Available online 8 April 2013

Keywords: Maximum degree Order Size Total domination

#### ABSTRACT

Let G be a graph, each component of which has order at least 3, and let G have order n, size m, total domination number  $\gamma_t$  and maximum degree  $\Delta(G)$ . Let  $\Delta=3$  if  $\Delta(G)=2$  and  $\Delta=\Delta(G)$  if  $\Delta(G)\geq 3$ . It is known [M.A. Henning, A linear Vizing-like relation relating the size and total domination number of a graph, J. Graph Theory 49 (2005) 285–290; E. Shan, L. Kang, M.A. Henning, Erratum to: a linear Vizing-like relation relating the size and total domination number of a graph, J. Graph Theory 54 (2007) 350–353] that  $m\leq \Delta(n-\gamma_t)$ . In this paper we characterize the extremal graphs G satisfying  $m=\Delta(n-\gamma_t)$ .

© 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

In this paper we continue the study of total domination in graphs. Let G = (V, E) be a graph with vertex set V, edge set E and no isolated vertex. A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by  $\mathcal{Y}_{t}(G)$ , is the minimum cardinality of a TD-set. A TD-set of G of cardinality  $\mathcal{Y}_{t}(G)$  is called a  $\mathcal{Y}_{t}(G)$ -set. Total domination in graphs is now well studied in graph theory. The literature on the subject has been surveyed and detailed in the recent book [12]. A survey of total domination in graphs can also be found in [9].

A classical result of Vizing [18] relates the size and the ordinary domination number,  $\gamma$ , of a graph of given order. Rautenbach [14] shows that the square dependence on n and  $\gamma$  in the result of Vizing turns into a linear dependence on n,  $\gamma$ , and the maximum degree  $\Delta$ .

Dankelmann et al. [4] proved a Vizing-like relation between the size and the total domination number of a graph of given order. Sanchis [15] showed that if we restrict our attention to connected graphs with total domination number at least 5, then the bound in [4] can be improved slightly. The square dependence on n and  $\gamma_t$  presented in [4,15] is improved in [8,16,19] into a linear dependence on n,  $\gamma_t$  and  $\Delta$  by demanding a more even distribution of the edges by restricting the maximum degree  $\Delta$ . In particular, the following linear Vizing-like relation relating the size of a graph and its order, total domination number, and maximum degree is established in [8,16].

**Theorem A** ([8,16]). Let G be a graph each component of which has order at least 3, and let G have order n, size m, total domination number  $\gamma_t$ , and maximum degree  $\Delta(G)$ . Let  $\Delta=3$  if  $\Delta(G)=2$  and  $\Delta=\Delta(G)$  if  $\Delta(G)\geq 3$ . Then,  $m\leq \Delta(n-\gamma_t)$ .

<sup>\*</sup> Corresponding author. Tel.: +27 011 559 3762; fax: +27 011 559 2874. E-mail addresses: mahenning@uj.ac.za (M.A. Henning), ejoubert@uj.ac.za (E.J. Joubert).



**Fig. 1.** The generalized Petersen graph  $GP_{16}$  of order 16.



**Fig. 2.** Cubic graphs  $G_4 \in \mathcal{G}$  and  $H_4 \in \mathcal{H}$ .

Our aim in this paper is to characterize the extremal graphs achieving equality in the upper bound in Theorem A; that is, to characterize the graphs G satisfying the statement of Theorem A such that  $m = \Delta(n - \gamma_t)$ .

#### 1.1. Notation

For notation and graph theory terminology we in general follow [6]. Specifically, let G = (V, E) be a graph with vertex set V of order n(G) = |V| and edge set E of size m(G) = |E|, and let v be a vertex in V. The open neighborhood of v is  $N_G(v) = \{u \in V \mid uv \in E(G)\}$  and the closed neighborhood of v is  $N_G[v] = \{v\} \cup N(v)$ . The degree of v is  $d_G(v) = |N_G(v)|$ . The minimum and maximum degree among the vertices of G is denoted by  $d_G(G)$  and  $d_G(G)$ , respectively. A vertex adjacent to a vertex of degree 1 is called a support vertex. For a set  $S \subseteq V$ , its open neighborhood is the set  $N_G(S) = \bigcup_{v \in S} N_G(v)$ , and its closed neighborhood is the set  $N_G(S) = N_G(S) \cup S$ . If the graph G is clear from the context, we simply write  $d_G(v)$  and  $d_G(v)$  rather than  $d_G(v)$  and  $d_G(v)$ , respectively. Further we write  $d_G(v) \in S$  and  $d_G(v) \in S$  are a vertex and  $d_G(v) \in S$  and

For a set  $S \subseteq V$ , the subgraph induced by S is denoted by G[S]. Further if  $S \neq V$ , then we denote the graph obtained from G by deleting all vertices in S by G - S. A component of G that is isomorphic to a graph F is called an F-component of G.

A cycle on n vertices is denoted by  $C_n$ , while a path on n vertices is denoted by  $P_n$ . We denote by  $K_n$  the complete graph on n vertices. A 2-path in G is a path on at least three vertices with both ends of the path having degree at least 3 in G and with every internal vertex of the path having degree 2 in G. A special 2-path in G is a 2-path  $v_1v_2v_3v_4v_5$  such that  $v_1$  and  $v_5$  have two common neighbors, x and y say, in G, and the vertices  $v_1$ ,  $v_5$ ,  $v_5$  and  $v_5$  all have degree 3 in  $v_5$ . In particular, we note that  $v_5$  and  $v_5$  and  $v_5$  and  $v_5$  and  $v_5$  and  $v_5$  are  $v_5$  are  $v_5$  are  $v_5$  are  $v_5$  and  $v_5$  are  $v_5$  are  $v_5$  are  $v_5$  and  $v_5$  are  $v_5$  are

#### 2. Special graphs and families of graphs

#### 2.1. The family & cubic

Let  $GP_{16}$  denote the generalized Petersen graph of order 16 shown in Fig. 1.

The following two infinite families  $\mathcal{G}$  and  $\mathcal{H}$  of connected cubic graphs (described below) with total domination number one-half their orders are constructed in [5]. For  $k \geq 1$ , let  $G_k$  be the graph constructed as follows. Consider two copies of the path  $P_{2k}$  with respective vertex sequences  $a_1b_1a_2b_2\ldots a_kb_k$  and  $c_1d_1c_2d_2\ldots c_kd_k$ . Let  $A=\{a_1,a_2,\ldots,a_k\}$ ,  $B=\{b_1,b_2,\ldots,b_k\}$ ,  $C=\{c_1,c_2,\ldots,c_k\}$ , and  $D=\{d_1,d_2,\ldots,d_k\}$ . For each  $i\in\{1,2,\ldots,k\}$ , join  $a_i$  to  $d_i$  and  $b_i$  to  $c_i$ . To complete the construction of the graph  $G_k\in\mathcal{G}$  join  $a_1$  to  $c_1$  and  $b_k$  to  $d_k$ . Let  $\mathcal{G}=\{G_k\mid k\geq 1\}$ . For  $k\geq 2$ , let  $H_k$  be obtained from  $G_k$  by deleting the two edges  $a_1c_1$  and  $b_kd_k$  and adding the two edges  $a_1b_k$  and  $c_1d_k$ . Let  $\mathcal{H}=\{H_k\mid k\geq 2\}$ . We note that  $G_k$  and  $G_k$  are cubic graphs of order  $G_k$ . Further, we note that  $G_k$  are graphs  $G_k$  and  $G_k$  and  $G_k$  and  $G_k$  and  $G_k$  and  $G_k$  are cubic graphs of order  $G_k$ . Further, we note that  $G_k$  and  $G_k$  a

Let  $g_{\text{cubic}} = g \cup \mathcal{H} \cup \{GP_{16}\}$ . We note that each graph in the family  $g_{\text{cubic}}$  is a cubic graph.

### Download English Version:

# https://daneshyari.com/en/article/419613

Download Persian Version:

https://daneshyari.com/article/419613

<u>Daneshyari.com</u>