Contents lists available at SciVerse ScienceDirect ## **Discrete Applied Mathematics** journal homepage: www.elsevier.com/locate/dam # Equality in a linear Vizing-like relation that relates the size and total domination number of a graph Michael A. Henning, Ernst J. Joubert* Department of Mathematics, University of Johannesburg, Auckland Park 2006, South Africa #### ARTICLE INFO Article history: Received 12 January 2012 Received in revised form 14 March 2013 Accepted 15 March 2013 Available online 8 April 2013 Keywords: Maximum degree Order Size Total domination #### ABSTRACT Let G be a graph, each component of which has order at least 3, and let G have order n, size m, total domination number γ_t and maximum degree $\Delta(G)$. Let $\Delta=3$ if $\Delta(G)=2$ and $\Delta=\Delta(G)$ if $\Delta(G)\geq 3$. It is known [M.A. Henning, A linear Vizing-like relation relating the size and total domination number of a graph, J. Graph Theory 49 (2005) 285–290; E. Shan, L. Kang, M.A. Henning, Erratum to: a linear Vizing-like relation relating the size and total domination number of a graph, J. Graph Theory 54 (2007) 350–353] that $m\leq \Delta(n-\gamma_t)$. In this paper we characterize the extremal graphs G satisfying $m=\Delta(n-\gamma_t)$. © 2013 Elsevier B.V. All rights reserved. #### 1. Introduction In this paper we continue the study of total domination in graphs. Let G = (V, E) be a graph with vertex set V, edge set E and no isolated vertex. A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by $\mathcal{Y}_{t}(G)$, is the minimum cardinality of a TD-set. A TD-set of G of cardinality $\mathcal{Y}_{t}(G)$ is called a $\mathcal{Y}_{t}(G)$ -set. Total domination in graphs is now well studied in graph theory. The literature on the subject has been surveyed and detailed in the recent book [12]. A survey of total domination in graphs can also be found in [9]. A classical result of Vizing [18] relates the size and the ordinary domination number, γ , of a graph of given order. Rautenbach [14] shows that the square dependence on n and γ in the result of Vizing turns into a linear dependence on n, γ , and the maximum degree Δ . Dankelmann et al. [4] proved a Vizing-like relation between the size and the total domination number of a graph of given order. Sanchis [15] showed that if we restrict our attention to connected graphs with total domination number at least 5, then the bound in [4] can be improved slightly. The square dependence on n and γ_t presented in [4,15] is improved in [8,16,19] into a linear dependence on n, γ_t and Δ by demanding a more even distribution of the edges by restricting the maximum degree Δ . In particular, the following linear Vizing-like relation relating the size of a graph and its order, total domination number, and maximum degree is established in [8,16]. **Theorem A** ([8,16]). Let G be a graph each component of which has order at least 3, and let G have order n, size m, total domination number γ_t , and maximum degree $\Delta(G)$. Let $\Delta=3$ if $\Delta(G)=2$ and $\Delta=\Delta(G)$ if $\Delta(G)\geq 3$. Then, $m\leq \Delta(n-\gamma_t)$. ^{*} Corresponding author. Tel.: +27 011 559 3762; fax: +27 011 559 2874. E-mail addresses: mahenning@uj.ac.za (M.A. Henning), ejoubert@uj.ac.za (E.J. Joubert). **Fig. 1.** The generalized Petersen graph GP_{16} of order 16. **Fig. 2.** Cubic graphs $G_4 \in \mathcal{G}$ and $H_4 \in \mathcal{H}$. Our aim in this paper is to characterize the extremal graphs achieving equality in the upper bound in Theorem A; that is, to characterize the graphs G satisfying the statement of Theorem A such that $m = \Delta(n - \gamma_t)$. #### 1.1. Notation For notation and graph theory terminology we in general follow [6]. Specifically, let G = (V, E) be a graph with vertex set V of order n(G) = |V| and edge set E of size m(G) = |E|, and let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E(G)\}$ and the closed neighborhood of v is $N_G[v] = \{v\} \cup N(v)$. The degree of v is $d_G(v) = |N_G(v)|$. The minimum and maximum degree among the vertices of G is denoted by $d_G(G)$ and $d_G(G)$, respectively. A vertex adjacent to a vertex of degree 1 is called a support vertex. For a set $S \subseteq V$, its open neighborhood is the set $N_G(S) = \bigcup_{v \in S} N_G(v)$, and its closed neighborhood is the set $N_G(S) = N_G(S) \cup S$. If the graph G is clear from the context, we simply write $d_G(v)$ and $d_G(v)$ rather than $d_G(v)$ and $d_G(v)$, respectively. Further we write $d_G(v) \in S$ and are a vertex and $d_G(v) \in S$ For a set $S \subseteq V$, the subgraph induced by S is denoted by G[S]. Further if $S \neq V$, then we denote the graph obtained from G by deleting all vertices in S by G - S. A component of G that is isomorphic to a graph F is called an F-component of G. A cycle on n vertices is denoted by C_n , while a path on n vertices is denoted by P_n . We denote by K_n the complete graph on n vertices. A 2-path in G is a path on at least three vertices with both ends of the path having degree at least 3 in G and with every internal vertex of the path having degree 2 in G. A special 2-path in G is a 2-path $v_1v_2v_3v_4v_5$ such that v_1 and v_5 have two common neighbors, x and y say, in G, and the vertices v_1 , v_5 , v_5 and v_5 all have degree 3 in v_5 . In particular, we note that v_5 and v_5 and v_5 and v_5 and v_5 and v_5 are are v_5 are v_5 and v_5 are v_5 are v_5 are v_5 and v_5 are #### 2. Special graphs and families of graphs #### 2.1. The family & cubic Let GP_{16} denote the generalized Petersen graph of order 16 shown in Fig. 1. The following two infinite families \mathcal{G} and \mathcal{H} of connected cubic graphs (described below) with total domination number one-half their orders are constructed in [5]. For $k \geq 1$, let G_k be the graph constructed as follows. Consider two copies of the path P_{2k} with respective vertex sequences $a_1b_1a_2b_2\ldots a_kb_k$ and $c_1d_1c_2d_2\ldots c_kd_k$. Let $A=\{a_1,a_2,\ldots,a_k\}$, $B=\{b_1,b_2,\ldots,b_k\}$, $C=\{c_1,c_2,\ldots,c_k\}$, and $D=\{d_1,d_2,\ldots,d_k\}$. For each $i\in\{1,2,\ldots,k\}$, join a_i to d_i and b_i to c_i . To complete the construction of the graph $G_k\in\mathcal{G}$ join a_1 to c_1 and b_k to d_k . Let $\mathcal{G}=\{G_k\mid k\geq 1\}$. For $k\geq 2$, let H_k be obtained from G_k by deleting the two edges a_1c_1 and b_kd_k and adding the two edges a_1b_k and c_1d_k . Let $\mathcal{H}=\{H_k\mid k\geq 2\}$. We note that G_k and G_k are cubic graphs of order G_k . Further, we note that G_k are graphs G_k and G_k and G_k and G_k and G_k and G_k are cubic graphs of order G_k . Further, we note that G_k and a Let $g_{\text{cubic}} = g \cup \mathcal{H} \cup \{GP_{16}\}$. We note that each graph in the family g_{cubic} is a cubic graph. ### Download English Version: # https://daneshyari.com/en/article/419613 Download Persian Version: https://daneshyari.com/article/419613 <u>Daneshyari.com</u>