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a b s t r a c t

This paper considers the problem of clustering the vertices of a complete edge-weighted
graph. The objective is to maximize the sum of the edge weights within the clusters
(also called cliques). This so-called Clique Partitioning Problem (CPP) is NP-complete, and
has several real-life applications such as groupings in flexible manufacturing systems,
in biology, in flight gate assignment, etc. Numerous heuristics and exact approaches as
well as benchmark tests have been presented in the literature. Most exact methods use
branch and bound with branching over edges. We present tighter upper bounds for each
search tree node than those known from the literature, improve the constraint propagation
techniques for fixing edges in each node, and present a new branching scheme. The
theoretical improvements are reflected by computational testswith real-life data. Although
a standard solver delivers best results on randomly generated data, the runtime of the
proposed algorithm is very low when being applied to instances on object clustering.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A task that frequently arises in qualitative data analysis is to uncover natural groupings, or types, of objects, each ofwhich
is characterized by several attributes. One can think of these objects as vertices of an edge-weighted graph, G; each positive
or negative weight represents some measure of similarity or dissimilarity, respectively, of an edge-defining object pair. A
clustering of the objects into groups is a partition of the graph, which means a partition of the vertex set of G into non-
overlapping subsets. The set of edges connecting vertices of different subsets from some partition of G is called a multicut.
In order to find groups that are as homogeneous as possible, positive edges should appear within groups and negative edges
in the multicut. Hence, a best clustering is one with a minimal multicut weight.

If there are no restrictions on the number of vertices in each cluster, this problem is called Clique Partitioning Problem
(CPP). The CPP is NP-complete unless all edgeweights are positive or all weights are negative (see [6,21]). Theoretical aspects
of this problem are discussed by Grötschel and Wakabayashi [9], and Grötschel and Wakabayashi [8] present a cutting
plane algorithm as well as benchmark tests. Different publications refer to these tests: de Amorim et al. [3] apply simulated
annealing, Dorndorf and Pesch [5] present an ejection chain heuristic as well as a branch and bound method, and Brusco
and Köhn [1] describe two neighborhood search heuristics with an embedded relocation algorithm and an embedded tabu
search method. Kochenberger et al. [14] introduce a new model representation for the CPP, which is especially suitable for
large instances, which are then solved using tabu search. The cutting plane algorithm by Grötschel and Wakabayashi [8] is
the basis for a cutting plane algorithm by Oosten et al. [17], who present further facet-defining inequalities.

Some papers present models with additional restrictions on the number of cliques or on the number of vertices in a
clique. Ji and Mitchell [12] consider the problem in which each cluster must have a minimum number of vertices. They
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present a branch and price scheme for solving the problem. The pricing problem is solved using an integer program. The
clustering problem when considering either a maximal or a minimal number of clusters has been studied by Chopra and
Rao [2]. The polytopes of both problems are analyzed and valid inequalities and facets are derived. If the number of vertices
in each clique is restricted, or, more generally, if the sum of vertex weights in each clique is bounded, the problem is called
clustering with knapsack constraint. This problem is analyzed and solved using branch and price algorithms by Johnson
et al. [13] and Mehrotra and Trick [16].

Real-life applications of the CPP come from, but are not restricted to, biology, flexible manufacturing systems, airport
logistics, and social sciences. In biology, the classification of animals and plants is based on qualitative and/or quantitative
descriptions. As there is no limit on the number of classes, the CPP is suited for the determination of a classification. The test
set provided by Grötschel and Wakabayashi [8] contains some instances from this application. In manufacturing systems,
an approach called Group Technology (GP) (see, for example, the surveys by Potts and Van Wassenhove [18] and Liaee
and Emmons [15]) has become popular; it uses similarities of different products (and/or activities) in their production
(execution). The groups can be determined using the CPP, as shown by Wang et al. [22] and Oosten et al. [17]. Dorndorf
et al. [4] present an application of the CPP to airport logistics. During ground handling, aircraft have to be grouped such
that all aircraft of a group are assigned to the same gate. There are quite a few restrictions and objectives, which can be
considered by choosing appropriate edge weights, e.g., aircraft being at the airport at the same time should not be in the
same group, which is enforced by a large negative value. A variety of applications of the CPP in social sciences, especially in
psychology, are given by Brusco and Köhn [1].

In this paper, we describe a new branch and bound algorithm for solving the CPP. First, we present upper bounds that
are based on the triangular restrictions, i.e., the fact that, if vertices i and j are in the same cluster, and i and k are in the same
cluster, then j and k have to be in the same cluster. In all instances of a test set to be found in literature, we were able to
reduce the initial upper bound at the root node by at least 60%. Second, we use constraint propagation techniques. Especially
when the difference between upper and lower bound becomes small, these techniques lead to numerous fixations of edges
(i.e., the fact that two vertices must or must not be in the same cluster). In many instances tested, the upper bounds and the
constraint propagation techniques (although easy to apply) lead to the optimal solution in the root node. Third, we present
a new branching scheme using dichotomy. However, in general, the two branches do not halve the search space. Thus, our
branching scheme guarantees that the child node containing the bigger part of the search space has a tight upper bound.

2. The clique partitioning problem

Consider a complete edge-weighted graph G = (V , E,W ) consisting of a set of vertices V = {1, 2, . . . , n}, a set of edges
E =


eij|eij = {i, j}, i, j ∈ V , i ≠ j


, and a set of edge weights W = (wij), i, j ∈ V , wij ∈ R ∪ {−∞} with wij = wji. The

clique partitioning problem is to find an equivalence relation on V , so that the sum of the edge weights of all vertex pairs
in relation is maximized. This is equivalent to finding a partition of V into cliques, i.e., vertex subsets, so that the sum of the
edge weights within the cliques is maximized. With binary variables

xij =


1 if vertices i and j are in relation (i.e. i and j belong to the same clique),
0 otherwise

for all edges {i, j}, the CPP can be described by the following model (see [8]):

max


1≤i<j≤n

wij · xij

s.t. xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ n

xij − xjk + xik ≤ 1 for 1 ≤ i < j < k ≤ n (2.1)
−xij + xjk + xik ≤ 1 for 1 ≤ i < j < k ≤ n
xij ∈ {0, 1} for 1 ≤ i < j ≤ n.

The constraints guarantee the transitivity of the relation: if vertices i and j belong to the same clique and vertices j and k
belong to the same clique, then vertices i, j, k belong to the same clique.

We present a branch and bound algorithm for solving this problem. The binary branching procedure decides, for every
edge of the graph,whether it is selected and included in a potential solution or not. After eachbranching, consistency tests are
applied (e.g., restrictions are checked) in order to find additional edges that now must or must not be selected. Afterwards,
an upper bound is determined for each search tree node.

3. The search tree

First, a lower bound g with a corresponding feasible solution for the clique partitioning problem will be determined,
using an arbitrary heuristic algorithm. We have used the ejection chain algorithm presented by Dorndorf and Pesch [5].

The search tree structure is as follows. At the root, there is the initial graph G(V , E,W ). Then branching with two child
nodes and a subsequent constraint propagation follows. In the first node, a specific variable xij is explicitly set to 1. In other
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