Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Complementary cycles in almost regular multipartite tournaments, where one cycle has length four

Lutz Volkmann*

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

ARTICLE INFO

Article history: Received 6 July 2012 Received in revised form 18 February 2013 Accepted 5 March 2013 Available online 29 March 2013

Keywords: Multipartite tournaments Complementary cycles Almost regular multipartite tournaments

ABSTRACT

Let *D* be a digraph with vertex set *V*(*D*) and independence number α (*D*). If $x \in V$ (*D*), then the numbers $d^+(x)$ and $d^-(x)$ are the outdegree and indegree of *x*, respectively. The global irregularity of a digraph *D* is defined by

 $i_g(D) = \max\{\max(d^+(x), d^-(x)) - \min(d^+(y), d^-(y)) \mid x, y \in V(D)\}.$

If $i_g(D) = 0$, then *D* is regular, and if $i_g(D) \le 1$, then *D* is almost regular. A *c*-partite tournament is an orientation of a complete *c*-partite graph.

In 1999, Yeo conjectured that each regular *c*-partite tournament *D* with $c \ge 4$ and $|V(D)| \ge 8$ contains a pair of vertex-disjoint directed cycles of lengths 4 and |V(D)| - 4. In 2004, Volkmann confirmed this conjecture for $c \ge 5$ and c = 4 and $\alpha(D) \ge 4$. As a supplement to this result, we prove in this paper the following theorem.

Let *D* be an almost regular *c*-partite tournament with $|V(D)| \ge 8$ such that all partite sets have the same cardinality *r*. If $c \ge 5$ or c = 4 and $r \ge 6$, then *D* contains a pair of vertex-disjoint directed cycles of lengths 4 and |V(D)| - 4.

© 2013 Elsevier B.V. All rights reserved.

1. Terminology

A *c*-partite or multipartite tournament is an orientation of a complete *c*-partite graph. A *tournament* is a *c*-partite tournament with exactly *c* vertices. By a *cycle* or *path* we mean a directed cycle or directed path.

In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and the arc set of a digraph D are denoted by V(D) and E(D), respectively. For a vertex set X of D, we define D[X] as the subdigraph induced by X.

If *xy* is an arc of a digraph *D*, then we write $x \to y$ and say *x* dominates *y*. If *X* and *Y* are two disjoint subsets of V(D) or subdigraphs of *D* such that every vertex of *X* dominates every vertex of *Y*, then we say that *X* dominates *Y*, denoted by $X \to Y$. Furthermore, $X \sim Y$ denotes the property that there is no arc from *Y* to *X*. By $d^+(X, Y)$ we define the number of arcs going from *X* to *Y*.

The out-neighborhood $N_D^+(x) = N^+(x)$ of a vertex x is the set of vertices dominated by x, and the *in-neighborhood* $N_D^-(x) = N^-(x)$ is the set of vertices dominating x. The numbers $d_D^+(x) = d^+(x) = |N^+(x)|$ and $d_D^-(x) = d^-(x) = |N^-(x)|$ are the outdegree and indegree of x, respectively. The minimum outdegree and the minimum indegree of D are denoted by $\delta^+(D)$ and $\delta^-(D)$, and the maximum outdegree and the maximum indegree of D are denoted by $\Delta^+(D)$ and $\Delta^-(D)$, respectively. A digraph D is p-inregular when $\delta^-(D) = \Delta^-(D) = p$.

The global irregularity of a digraph D is defined by

 $i_g(D) = \max\{\max(d^+(x), d^-(x)) - \min(d^+(y), d^-(y)) \mid x, y \in V(D)\},\$

CrossMark

^{*} Tel.: +49 241 80 94890; fax: +49 241 8092 136. *E-mail address:* volkm@math2.rwth-aachen.de.

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.03.006

and the local irregularity by $i_l(D) = \max |d^+(x) - d^-(x)|$ over all vertices x of D. If $i_g(D) = 0$, then D is regular, and if $i_g(D) \le 1$, then D is almost regular.

A cycle of length *m* is an *m*-cycle. A cycle in a digraph *D* is *Hamiltonian* if it contains all the vertices of *D*. A digraph is *Hamiltonian* if it contains a Hamiltonian cycle. A set $X \subseteq V(D)$ of vertices is *independent* if the induced subdigraph D[X] has no arcs. The *independence number* $\alpha(D) = \alpha$ is the maximum size among the independent sets of vertices of *D*.

A digraph *D* is *strongly connected* or *strong* if for each pair of vertices *u* and *v*, there is a path from *u* to *v* in *D*. A digraph *D* with at least k + 1 vertices is *k*-connected if for any set *A* of at most k - 1 vertices, the subdigraph D - A obtained from *D* by deleting *A* is strong. The *connectivity* of *D*, denoted by $\kappa(D)$, is then defined to be the largest value of *k* such that *D* is *k*-connected. A *cycle-factor* of a digraph *D* is a spanning subdigraph consisting of disjoint cycles. A cycle-factor with the minimum number of cycles is called a *minimal cycle-factor*. If *x* is a vertex of a cycle *C*, then the *predecessor* and the *successor* of *x* on *C* are denoted by x^- and x^+ , respectively.

2. Introduction and preliminary results

A digraph *D* is called *cycle complementary* if there exist two vertex-disjoint cycles *C* and *C'* such that $V(D) = V(C) \cup V(C')$. The problem of complementary cycles in tournaments was almost completely solved by Reid [6] in 1985 and Z. Song [7] in 1993. These authors proved that every 2-connected tournament *T* on at least 8 vertices has complementary cycles of length *t* and |V(T)| - t for all $t \in \{3, 4, ..., |V(T)| - 3\}$. For *c*-partite tournaments with $c \ge 4$, there exists the following conjecture.

Conjecture 2.1 (Yeo [16]). A regular *c*-partite tournament *D* with $c \ge 4$ and $|V(D)| \ge 8$ has a pair of vertex-disjoint cycles of length t and |V(D)| - t for all $t \in \{3, 4, ..., |V(D)| - 3\}$.

In 2004 and 2005, Volkmann [9,10] confirmed this conjecture for t = 4 and t = 3, unless *D* is a regular 4-partite tournament with two vertices in each partite set. In 2009, He, Korneffel, Meierling, Volkmann and Winzen [4] showed that Conjecture 2.1 is valid for t = 5 and $|V(D)| \ge 10$. For more information on complementary cycles in multipartite tournaments we refer the reader to the survey articles [8,11] by Volkmann.

As a supplement to the result in [9], we will prove in this paper the following theorem. Let *D* be an almost regular *c*-partite tournament with $|V(D)| \ge 8$ such that all partite sets have the same cardinality *r*. If $c \ge 5$ or c = 4 and $r \ge 6$, then *D* contains a pair of vertex-disjoint cycles of lengths 4 and |V(D)| - 4.

The following results play an important role in our investigations.

Theorem 2.2 (Moon [5]). Let *T* be a strongly connected tournament. Then every vertex of *T* is contained in an *m*-cycle for each $m \in \{3, 4, ..., |V(T)|\}$.

Theorem 2.3 (Bondy [1]). Each strong *c*-partite tournament with $c \ge 3$ contains an *m*-cycle for each $m \in \{3, 4, ..., c\}$.

Theorem 2.4 (*Reid* [6], Song [7]). If *T* is a 2-connected tournament with $|V(T)| \ge 8$, then *T* contains two complementary cycles of length *t* and |V(T)| - t for every $3 \le t \le |V(T)|/2$.

Theorem 2.5 (Yeo [14]). Let *D* be a $(\lfloor q/2 \rfloor + 1)$ -connected multipartite tournament such that $\alpha(D) \leq q$. If *D* has a cycle-factor, then *D* is Hamiltonian.

Theorem 2.6 (Yeo [14]). Let *D* be a multipartite tournament having a cycle-factor but no Hamiltonian cycle. Then there exists a partite set V^{*} of *D* and an indexing C_1, C_2, \ldots, C_t of the cycles of some minimal cycle-factor of *D* such that for all arcs yx from C_i to C_1 for $2 \le j \le t$, it holds that $\{y^+, x^-\} \subseteq V^*$.

Theorem 2.7 (Yeo [15]). If D is multipartite tournament, then

$$\kappa(D) \ge \left\lceil \frac{|V(D)| - \alpha(D) - 2i_l(D)}{3} \right\rceil.$$

Theorem 2.8 (Yeo [17]). Let V_1, V_2, \ldots, V_c be the partite sets of a *c*-partite tournament *D* such that $|V_1| \le |V_2| \le \cdots \le |V_c|$. If

$$i_g(D) \le \frac{|V(D)| - |V_{c-1}| - 2|V_c| + 2}{2},$$

then D is Hamiltonian.

Lemma 2.9 (Yeo [17], Gutin, Yeo [3]). A digraph D has no cycle-factor if and only if its vertex set V(D) can be partitioned into four subsets Y, Z, R₁, and R₂ such that

$$R_1 \rightsquigarrow Y, \qquad (R_1 \cup Y) \rightsquigarrow R_2, \quad and \quad |Y| > |Z|, \tag{1}$$

where Y is an independent set.

Download English Version:

https://daneshyari.com/en/article/419629

Download Persian Version:

https://daneshyari.com/article/419629

Daneshyari.com