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a b s t r a c t

The bounded edge-connectivity λk(G) of a connected graph G with respect to k (≥d(G))
is the minimum number of edges in G whose deletion from G results in a subgraph
with diameter larger than k and the edge-persistence D+(G) is defined as λd(G)(G), where
d(G) is the diameter of G. This paper considers the Cartesian product G1 × G2, shows
λk1+k2 (G1 × G2) ≥ λk1 (G1) + λk2 (G2) for k1 ≥ 2 and k2 ≥ 2, and determines the exact
values of D+(G) for G = Cn × Pm, Cn × Cm, Qn × Pm and Qn × Cm.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We follow [24] for graph-theoretical terminology and notation not defined here. Throughout this paper, a graph G =
(V , E) always means a connected and simple graph (without loops and multiple edges), where V = V (G) is the vertex-set
and E = E(G) is the edge-set. It is well known that the underlying topology of an interconnection network can be modeled
by a graph G = (V , E), where V is the set of processors and E is the set of communication links in the network.
Let x and y be two distinct vertices in a graph G = (V , E). The distance dG(x, y) between x and y is the number of edges

in the shortest xy-path, and the diameter of G is d(G) = max{dG(x, y) : x, y ∈ V (G)}. It is quite natural that, when an
interconnection network is modeled by a graph G, the diameter d(G) directly depicts transmission delay of the network if
the store-forward time of messages is the same at every vertex. Thus, the diameter is often taken as a measure of efficiency,
which is an important parameter tomeasure the performance of an interconnection network. In order to improve or increase
the efficiency of message transmission we need to minimize the diameter of the graph. This is the reason why this concept
has received considerable attention in the literature. Many famous graph-theoreticians were interested in this topics, such
as Erdős, Rényi, and Sós in [8–10], Alon, Gyárfás, and Ruszinkó [1], Harary [12], Chung [6,7], and so on. The interested reader
is referred to the survey paper [3] for early results.
Since some link faults may happen when a network is put into use, it is practically meaningful and important to consider

faulty networks. In other words, the removal of some edges in a graphmay result in increasing of diameter of the remaining
graph, which motivated Chung and Garey [7] to propose the following concept. The edge-fault-tolerant diameter Dt(G) of a
t-edge-connected graph G is defined as

Dt(G) = max{d(G− F) : F ⊂ E(G), |F | < t}.
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On the other hand, in a real-time system, the message delay must be limited within a given period since any message
obtained beyond the bound may be worthless. A natural question is how many faulty links at most can synchronously
happen in the network to ensure message delay within the effective bounds. In the language of graph theory, this problem
can be stated as follows. At most how many edges can be removed from a graph to ensure no increase of diameter of
the remaining graph. In the literature, this question is called the ‘‘edge-deletion problem’’. However, this problem is quite
difficult in general, since it has been proved to be NP-complete by Schoone, Bodlaender and van Leeuwen [20].
To investigate further this problem mentioned above, Exoo [11], motivated from Boesch et al. [4], proposed a measure

of network vulnerability, called the edge-persistence. The edge-persistence D+(G) of a graph G is the minimum number of
edges whose deletion from G increases the diameter of G. For example, D+(Pm) = D+(Cn) = 1, where Pm is a path of order
m and Cn is a cycle of length n. Motivated by Lovász, Neumann-Lara and Plummer [14], Xu [23] generalized this concept to
more general case, called the bounded edge-connectivity.
For any positive integer k and x, y ∈ V (G), the xy-bounded edge-connectivity λk(G; x, y)with respect to k is the minimum

number of edges in G whose deletion destroys all xy-paths of length at most k. The bounded edge-connectivity of G with
respect to k is defined as

λk(G) = min{λk(G; x, y) : x, y ∈ V (G)}.

Clearly, λk(G) ≤ δ(G), where δ(G) is the minimum degree of G. If k ≤ d(G) − 1, then λk(G) = 0. Thus, we assume that
k ≥ d(G) in this paper. Specially, λ1(G) = 1 if and only if G = Km is a complete graph of order m ≥ 2. It is also clear that
λk(G) = D+(G) if k = d(G), and λn−1(G) = λ(G), the classical edge-connectivity of G, if n = |V (G)|. Thus, the bounded
edge-connectivity is a generalization of both the edge-persistence and the classical edge-connectivity.
In [23], Xu established the relationships between λk(G) and Dt(G) as follows. For any connected graph G,
(a) λk(G) = t ⇔ Dt(G) ≤ k < Dt+1(G) if G is (t + 1)-edge-connected, or
(b) Dt(G) = k⇔ λk−1(G) < t ≤ λk(G) if G is t-edge-connected.
The three parametersλk(G),Dt(G) andD+(G) canbe viewed as importantmeasures of the vulnerability of communication

networks modeled as graphs and, thus, have received much research attention in the past years, see, for example, [4,5,7,11,
12,15–18,20–23,25].
We consider the Cartesian product G1×G2 of graphs G1 and G2. For graphs G1 and G2, the Cartesian product G1×G2 is the

graph with vertex-set V (G1 × G2) = V (G1)× V (G2) and edge-set E(G1 × G2) = {(x1, x2)(y1, y2)|x1 = y1 and x2y2 ∈ E(G2)
or x2 = y2 and x1y1 ∈ E(G1)}.
It is well known that the Cartesian product is an important research topic in graph theory (see, e.g., [13]). It is also

well known that, for designing large-scale interconnection networks, the Cartesian product is an important method to
obtain large graphs from smaller ones, with a number of parameters that can be easily calculated from the corresponding
parameters for those small initial graphs. The Cartesian product preservesmany nice properties such as regularity, existence
of Hamilton cycles and Euler circuits, and transitivity of the initial graphs (see, e.g., [23]). In fact, manywell-known networks
can be constructed by the Cartesian products of some simple graphs. For example, the n-dimensional hypercube Qn is the
Cartesian product of n complete graphs of order 2, a torus is the Cartesian product of two cycles, and a mesh is the Cartesian
product of two paths.
What we are interested in is the bounded edge-connectivity and edge-persistence of the Cartesian product of graphs.

Graham and Harary [12] showed D+(Qn) = n − 1; Sung and Wang [21] investigated D+(Cm × Cn), etc., and conjectured
D+(G1 × G2) ≥ max{D+(G1),D+(G2)} + 1.
In this paper, we first establish a lower bound of λk for the Cartesian product G1 × G2, that is, λk1+k2(G1 × G2) ≥

λk1(G1) + λk2(G2) for ki ≥ 2, i = 1, 2. As an immediate consequence, we obtain D
+(G1 × G2) ≥ D+(G1) + D+(G2) if

d(Gi) ≥ 2 for i = 1, 2. This lower bound is tight, and gives an affirmative answer to the above-mentioned conjecture of
Sung and Wang if the diameters of both G1 and G2 are at least two. Then we determine D+(Cn × Pm) = 1 for n = 3 and 2
for n ≥ 4; D+(Cn× Cm) = 2 if n = 3 orm = 3 or both n andm are odd, 3 otherwise. Lastly, we determine D+(Qn× Pm) = n
for n ≥ 2 and m ≥ 2; D+(Qn × Cm) = n for m = 3, n + 1 for m ≥ 4. These results correct some inaccurate results on
D+(Cn × Cm) in [21].
The rest of the paper is organized as follows. In Section 2 we establish the lower bound of λk1+k2(G1 × G2). The results

on D+(G1 × G2) for some Pn, Cn and Qn are presented in Section 3. The conclusions and remarks are in Section 4.

2. Bounded edge-connectivity

For a vertex x ∈ V (G1) and a subgraph H ⊆ G2, we use xH to denote the subgraph of G1 × G2 induced by {x} × V (H).
Similarly, for a vertex y ∈ V (G2), a subgraph H ⊆ G1, Hy denotes the subgraph of G1×G2 induced by V (H)×{y}. For a path
P = x1 · · · xi · · · xj · · · xn in G, P(xi, xj) denotes the section xi · · · xj of P . For the sake of convenience, we will denoted P as

P = x1
P(x1,xi)
−−−−→ xi

P(xi,xj)
−−−→ xj

P(xj,xn)
−−−−→ xn.

The symbol ε(P) denotes the length of P , which is the number of edges in P .
Now, we state our main result in this paper.
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