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a b s t r a c t

This paper presents a superpolynomial lower bound for the recently proposed snare mem-
orization non-oblivious strategy iteration algorithm due to Fearnley. Snare memorization
is amethod to train strategy iteration techniques to remember certain profitable substrate-
gies and reapply them again. We show that there is not much hope to find a polynomial-
time algorithm for solving parity games by applying such non-oblivious techniques.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present a superpolynomial lower bound for the strategy improvement algorithm for solving parity
games when parameterized with Fearnley’s recent non-oblivious rule [6].

Parity games are played on a directed graph that is partitioned into two node sets associated with the two players; the
nodes are labeled with natural numbers, called priorities. A play in a parity game is an infinite sequence of nodes whose
winner is determined by the parity of the highest priority that occurs infinitely often, giving parity games their name.

Parity games occur in several fields of theoretical computer science, e.g. as solution to the problem of complementation
of tree automata [1,4] or as algorithmic backend to the model checking problem of the modal µ-calculus [5,18].

Solving parity games is one of the few combinatorial problems that belong to the complexity class NP ∩ coNP and that
are not (yet) known to belong to P [5,3]. It has also been shown that solving parity games belongs to UP ∩ coUP [11].

There aremany algorithms that solve parity games, such as the recursive decomposing algorithmdue to Zielonka [20] and
its recent improvement by Jurdziński, Paterson and Zwick [13], the small progressmeasures algorithmdue to Jurdziński [12]
with its recent improvement by Schewe [15], the model-checking algorithm due to Stevens and Stirling [17] and finally the
two strategy improvement algorithms by Vöge and Jurdziński [19] and Schewe [16].

The strategy improvement, strategy iteration or policy iteration technique was introduced by Howard [10] for solving
problems onMarkov decision processes and has been adapted by several other authors for solving nonterminating stochastic
games [9], simple stochastic games [3], discounted and mean payoff games [14,21] as well as parity games [19].

Strategy iteration is an algorithmic scheme that is parameterized by an improvement rule that defines how to select a
successor strategy in the iteration process. Several rules, including randomized ones, have been proposed. Themost popular
deterministic improvement rule is the original locally improving rule that selects the best local improvement in every
point [19]. However, we have shown that there is an exponential lower bound for this rule [7,8].

The exponential lower bound is based on the implementation of a binary counter in the context of a parity game. Cyclic
structures represent the bits of the counter with certain strategy settings corresponding to set bits and unset bits. In fact,
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there is only a polynomial number of such settings for each bit occurring in a run of the strategy iterationwith some of these
settings reoccurring exponentially often.

Fearnley [6] therefore proposed so-called non-oblivious strategy iteration that is aware of reoccurring settings by
memorization. He introduced the notion of snares and showed that the cyclic structures of our exponential lower bound
belong to this subgame type. The paper presents an algorithmic scheme thatmemorizes occurring snares and tries to reapply
learned snare-solving strategies whenever it is more profitable than proceeding with the standard improvement rule. As it
turns out, this non-oblivious rule is able to solve the original lower bound games in polynomial time.

The main contribution of this paper, however, is the proof that the non-oblivious strategy iteration technique does not
solve parity games in general in polynomial time. We present a family of games on which the non-oblivious rule requires
superpolynomially many iterations. Essentially, we propose a binary counter again with cycles representing the bits, but
here, every cycle looks a bit differently in each iteration, yielding an exponential number of different occurring snares. Non-
oblivious strategy iteration is not able to solve the games in polynomially many iterations as no learned snare can be reused
in the run.

The rest of the paper is organized as follows. Section 2 defines the basic notions of parity games and notation that is
employed throughout the paper. Section 3 recaps the strategy improvement algorithm by Vöge and Jurdziński. In Section 4,
we define andmotivate snares and their presence as cyclic structures in strategy iteration and showwhy they are difficult to
solve. Section 5 defines thememorization scheme proposed by Fearnley. In Section 6, we present a family of games onwhich
the snare memorization rule requires a superpolynomial number of iterations and prove our claim in Section 7 correct.

2. Parity games

A parity game is a tuple G = (V , V0, V1, E, Ω) where (V , E) forms a directed graph whose node set is partitioned into
V = V0 ∪ V1 with V0 ∩ V1 = ∅, and Ω : V → N is the priority function that assigns to each node a natural number called the
priority of the node. We assume the graph to be total, i.e. for every v ∈ V there is a w ∈ V s.t. (v, w) ∈ E.

For two priority assignment functions Ω and Ω ′, we say that they are equivalent iff Ω(v) mod 2 = Ω ′(v) mod 2 for
every v ∈ V and Ω(v) ≤ Ω(w) iff Ω ′(v) ≤ Ω ′(w) for every v, w ∈ V . We say that two parity games are equivalent iff they
have the same graph and equivalent priority assignment functions.

W.l.o.g. we assumeΩ to be injective, i.e. there are no two different nodes with the same priority. However, we will reuse
priorities in our concrete lower bound constructions whenever a distinction between certain priorities does not have any
effect on the analysis of strategy iteration. Given the lower bound games, the formal proof then applies to any equivalent
game with injective priority assignment function.

In the following we will restrict ourselves to finite parity games.
We use infix notation vEw instead of (v, w) ∈ E and define the set of all successors of v as vE := {w | vEw}. The size |G|

of a parity game G = (V , V0, V1, E, Ω) is defined to be the cardinality of E, i.e. |G| := |E|; since we assume parity games
to be total w.r.t. E, this is a reasonable way to measure the size.

The game is played between two players called 0 and 1: starting in a node v0 ∈ V , they construct an infinite path through
the graph as follows. If the construction so far has yielded a finite sequence v0 . . . vn and vn ∈ Vi then player i selects a
w ∈ vnE and the play continues with v0 . . . vnw.

Every play has a unique winner given by the parity of the greatest priority that occurs infinitely often. The winner of the
play v0v1v2 . . . is player 0 iff the largest priority occurring infinitely often is even, otherwise player 1 wins the play. That is,
player 0 tries to make an even priority occur infinitely often without any greater odd priorities occurring infinitely often,
player 1 attempts the converse.

We depict parity games as directed graphs where nodes owned by player 0 are drawn as circles and nodes owned by
player 1 are drawn as rectangles; all nodes are labeled with their respective priority, and — if needed — with their name.
We also use diamond-shaped nodes whenever we want to emphasize that it does not matter which player owns the node,
i.e. if the out-degree is one.

A strategy for player i is a — possibly partial — function σ : V ∗Vi → V s.t. for all sequences v0 . . . vn with vj+1 ∈ vjE for
all j = 0, . . . , n − 1 we have: σ(v0 . . . vn) ∈ vnE. A play v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we
have: if vj ∈ Vi then vj+1 = σ(v0 . . . vj). Intuitively, conforming to a strategy means to always make those choices that are
prescribed by the strategy. A strategy σ for player i is a winning strategy in node v if player i wins every play that begins in
v and conforms to σ .

A strategy σ for player i is called positional if for all v0 . . . vn ∈ V ∗Vi and all w0 . . . wm ∈ V ∗Vi we have: if vn = wm then
σ(v0 . . . vn) = σ(w0 . . . wm). That is, the choice of the strategy on a finite path only depends on the last node on that path.
The set of positional strategies for player i is denoted by Si(G). Let (v, w) be an edge of player i and ϱ be a strategy of player i.
By ϱ[(v, w)] and ϱ[v → w], we denote the update of ϱ to (v, w), i.e.:

ϱ[(v, w)] : u →

w if u = v
ϱ(u) otherwise.

With G we associate two sets W0,W1 ⊆ V ;Wi is the set of all nodes v s.t. player i has a winning strategy for the game
G starting in v. Here we restrict ourselves to positional strategies because it is well-known that a player has a (general)
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