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a b s t r a c t

The antibandwidth problem is to label vertices of a graph G(V , E) bijectively by integers
0, 1, . . . , |V | − 1 in such a way that the minimal difference of labels of adjacent vertices is
maximized. In this paper we study the antibandwidth of Hamming graphs. We provide
labeling algorithms and tight upper bounds for general Hamming graphs Πd

k=1Knk . We
have exact values for special choices of n′

is and equality between antibandwidth and cyclic
antibandwidth values. Moreover, in the case where the two largest sizes of n′

is are different
we show that the Hamming graph is multiplicative in the sense of [9]. As a consequence,
we obtain exact values for the antibandwidth of p isolated copies of this type of Hamming
graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The antibandwidth problem is to label vertices of a graph G(V , E) bijectively by integers 0, 1, . . . , |V | − 1 in such a way
that the minimal difference of labels of adjacent vertices is maximized. The maxmin difference is called the antibandwidth
of G.

This problem was originally introduced in [15] in connection with multiprocessors scheduling problems. Another
motivation comes from the area of frequency assignment problem [10] and obnoxious facility location problems [5]. This
problem is a dual one to the well-known bandwidth minimization problem [6] and also belongs to the large family of graph
labeling problems [8]. The antibandwidth problem is NP-complete for general graphs. The question ‘‘Is ab(G) ≥ 2?’’ is
equivalent to deciding whether the complement of G contains a Hamiltonian path. So far there exist polynomial algorithms
for 3 classes of graphs: the complements of interval, arborescent comparability and threshold graphs [7,14]. Recently, new
heuristic methods have appeared in literature [2,3]. Known results on antibandwidth include exact values and tight bounds
for paths, cycles, special trees [4,18,22],meshes [20,19], tori and hypercubes [17,21]. In the area of graph drawings a problem
called the ‘‘maximum differential graph coloring problem’’ recently appeared. This problem is basically the same as the
antibandwidth problem [13].

The cyclic antibandwidth is a natural and typical extension of the original problemwhen the differences are computed as
distances ‘‘around cycle’’. The value of the cyclic antibandwidth is determined for meshes, toroidal meshes and hypercubes
in [17].

In this paper we provide antibandwidth and cyclic antibandwidth values for d-dimensional Hamming graphs. This class
of graphs is interesting because of its connection to the area of the error-correcting codes [11] and association schemes.
Particularly, we show that if 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd−1 < nd, then

ab(Πd
k=1Knk) = n1n2 · · · nd−1.

∗ Corresponding author. Fax: +421 48 415 10 12.
E-mail addresses: Stefan.Dobrev@savba.sk (S. Dobrev), kralovic@dcs.fmph.uniba.sk (R. Královič), pardubsk@dcs.fmph.uniba.sk (D. Pardubská),

torok@savbb.sk (L. Török), vrto@savba.sk (I. Vrt’o).

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.12.026

http://dx.doi.org/10.1016/j.dam.2012.12.026
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.dam.2012.12.026&domain=pdf
mailto:Stefan.Dobrev@savba.sk
mailto:kralovic@dcs.fmph.uniba.sk
mailto:pardubsk@dcs.fmph.uniba.sk
mailto:torok@savbb.sk
mailto:vrto@savba.sk
http://dx.doi.org/10.1016/j.dam.2012.12.026


S. Dobrev et al. / Discrete Applied Mathematics 161 (2013) 1402–1408 1403

We prove equality between the antibandwidth and the cyclic antibandwidth for most of the Hamming graphs. Moreover,
in the case where the two largest sizes of n′

is are different we show that the Hamming graph is multiplicative in the sense
of [9]. As a consequence we obtain exact values for the antibandwidth of p isolated copies of this type of Hamming graphs.
Finally, let us mention that the dual problem—bandwidth of the Hamming graph—was studied in [1,12].

2. Preliminaries

For a nonempty graph G = (V , E), let f be a bijective labeling

f : V → {0, 1, 2, 3, . . . , |V | − 1}.

Define the antibandwidth of G according to f by

ab(G, f ) = min
uv∈E

|f (u) − f (v)|.

The antibandwidth of G is defined by

ab(G) = max
f

ab(G, f ),

where themaximum is taken over all bijective labelings f . Define the cyclic antibandwidth of a connected graph G according
to f by

cab(G, f ) = min
uv∈E

{|f (u) − f (v)|, |V | − |f (u) − f (v)|}.

The cyclic antibandwidth of G is defined by

cab(G) = max
f

cab(G, f ),

with maximum taken over all bijective labelings f .
The d-dimensional Hamming graph Πd

k=1Knk is defined by the Cartesian product of d complete graphs Knk , for k =

1, 2, . . . , d. The vertices of Πd
k=1Knk are d-tuples (i1, i2, . . . , id), where ik ∈ {0, 1, 2, . . . , nk −1}. Two vertices (i1, i2, . . . , id)

and (j1, j2, . . . , jd) are adjacent iff the two d-tuples differ in precisely one coordinate. In case nk = n, for all k, we denote the
graph as K d

n . Define the value of Nk as follows. Set N0 = 1 and for k = 1, 2, . . . , d, denote Nk = n1n2 · · · nk.

3. Antibandwidth of Hamming graphs

In this section we prove our main result: exact and tight bounds for the antibandwidth of Hamming graphs.

Theorem 3.1. For d ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd,

ab(Πd
k=1Knk) = n1n2 · · · nd−1, if nd−1 ≠ nd,

ab(Πd
k=1Knk) = n1n2 · · · nd−1 − 1, if nd−1 = nd and nd−2 ≠ nd−1,

and

n1n2 · · · nd−1 − min{n1n2 · · · nd−2, nq+1 · · · nd−1} ≤ ab(Πd
k=1Knk) ≤ n1n2 · · · nd−1 − 1,

where nd−2 = nd−1 = nd, d ≥ 3 and q is the minimal index such that q ≤ d − 2 and nq = nd.

Proof. Upper bound. Let α(G) denote the size of the largest independent set of a graph G. From [16] we have ab(G) ≤ α(G).
We show that α(Πd

k=1Knk) ≤ Nd−1,which will prove a general upper bound. Partition the vertices ofΠd
k=1Knk into Nd−1 sets.

For fixed ai, 0 ≤ ai ≤ ni − 1, 0 ≤ i ≤ d− 1, let the corresponding set be {(a1, a2, . . . , ad−1, xd)|0 ≤ xd ≤ nd − 1}. Given any
independent set I of Πd

k=1Knk , realize that every partition set contains at most one vertex from I , which proves the claim.
In case nd−1 = nd we can slightly improve the general upper bound. Consider any labeling function f . We may imagine

that vertices of Πd
k=1Knk are placed on a real line into integer points 0, 1, 2, . . . ,Nd −1, such that a vertex v, labeled by f (v),

is placed at the position f (v). Every vertex of Πd
k=1Knk belongs to two cliques: Knd and Knd−1 , whose intersection is precisely

that vertex. Consider the vertex placed at the position ab(Πd
k=1Knk)−1 and the corresponding cliques Knd and Knd−1 . Clearly,

all vertices of these cliques must lie in the interval [ab(Πd
k=1Knk) − 1,Nd − 1]. Because nd−1 = nd, one of the cliques, say

Knd , must lie in a shorter interval, otherwise the two cliques would have two vertices in common. Hence

ab(Πd
k=1Knk) ≤

Nd − 2 − (ab(Πd
k=1Knk) − 1)

nd − 1
≤ Nd−1 −

1
nd − 1

,

which implies ab(Πd
k=1Knk) ≤ Nd−1 − 1.
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