Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Algorithmic aspects of the k -domination problem in graphs^{$\dot{\alpha}$}

James K. Lan™^{[a,](#page-0-1)}*, Gerard Jennhwa Chang ^{a,[b,](#page-0-3)[c](#page-0-4)}

^a *Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan*

b *Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan*

^c *National Center for Theoretical Sciences, Taipei Office, Taiwan*

a r t i c l e i n f o

Article history: Received 21 June 2012 Received in revised form 22 December 2012 Accepted 12 January 2013 Available online 12 February 2013

Keywords: k-domination Tree Block graph Cactus Block-cactus graph Split graph Algorithm NP-complete

1. Introduction

a b s t r a c t

For a positive integer *k*, a *k*-*dominating set* of a graph *G* is a subset $D \subseteq V(G)$ such that every vertex not in *D* is adjacent to at least *k* vertices in *D*. The *k*-*domination problem* is to determine a minimum *k*-dominating set of *G*. This paper studies the *k*-domination problem in graphs from an algorithmic point of view. In particular, we present a lineartime algorithm for the *k*-domination problem for graphs in which each block is a clique, a cycle or a complete bipartite graph. This class of graphs includes trees, block graphs, cacti and block-cactus graphs. We also establish NP-completeness of the *k*-domination problem in split graphs.

© 2013 Elsevier B.V. All rights reserved.

All graphs in this paper are simple, i.e., finite, undirected, loopless and without multiple edges. Domination is a core NP-complete problem in graph theory and combinatorial optimization. It has many applications in the real world such as location problems, sets of representatives, social network theory, etc.; see [\[3](#page--1-0)[,12\]](#page--1-1) for more interesting applications. A vertex is said to *dominate* itself and all of its neighbors. A *dominating set* of a graph *G* is a subset *D* of *V*(*G*) such that every vertex not in *D* is dominated by at least one vertex in *D*. The *domination number* γ (*G*) of *G* is the minimum size of a dominating set of *G*. The *domination problem* is to find a minimum dominating set of a graph.

It is well-known that given any minimum dominating set *D* of a graph *G*, one can always remove two edges from *G* such that *D* is no longer a dominating set for *G* [\[12,](#page--1-1) p. 184]. The idea of dominating each vertex multiple times is naturally considered. One of such generalizations is the concept of *k*-*domination*, introduced by Fink and Jacobson in 1985 [\[10\]](#page--1-2). For a positive integer *k*, a *k*-*dominating set* of a graph *G* is a subset $D \subseteq V(G)$ such that every vertex not in *D* is dominated by at least *k* vertices in *D*. The *k*-*domination number* γ*k*(*G*) of *G* is the minimum size of a *k*-dominating set of *G*. The *k*-*domination problem* is to determine a minimum *k*-dominating set of a graph. The special case when *k* = 1 is the ordinary domination.

Many of the *k*-domination results in the literature focused on finding bounds on the number γ*k*(*G*). In particular, bounds in terms of order, size, minimum degree, maximum degree, domination number, independence number, *k*-independence number, and matching number were extensively studied [\[2](#page--1-3)[,4](#page--1-4)[,6,](#page--1-5)[7,](#page--1-6)[9–11,](#page--1-7)[16\]](#page--1-8); also see the recent survey paper [\[5\]](#page--1-9).

∗ Corresponding author. Tel.: +886 910610006; fax: +886 2 23914439. *E-mail addresses:* drjamesblue@gmail.com (J.K. Lan), gjchang@math.ntu.edu.tw (G.J. Chang).

 $\overline{\alpha}$ This research was partially supported by the National Science Council of the Republic of China under grants NSC100-2811-M-002-146 and NSC98-2115-M-002-013-MY3.

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. [doi:10.1016/j.dam.2013.01.015](http://dx.doi.org/10.1016/j.dam.2013.01.015)

On the complexity side of the *k*-domination problem, Jacobson and Peters showed that the *k*-domination problem is NP-complete for general graphs [\[14\]](#page--1-10) and gave linear-time algorithms to compute the *k*-domination number of trees and series–parallel graphs [\[14\]](#page--1-10). The *k*-domination problem remains NP-complete in bipartite graphs or chordal graphs [\[1\]](#page--1-11). More complexity results for the *k*-domination problem are desirable.

In this paper, we explore efficient algorithms for the *k*-domination problem in graphs. In particular, we present a lineartime algorithm for the *k*-domination problem in graphs in which each block is a clique, a cycle or a complete bipartite graph. This class of graphs include trees, block graphs, cacti and block-cactus graphs. We also show that the *k*-domination problem remains NP-complete in split graphs, a subclass of chordal graphs.

2. Preliminaries

Let $G = (V, E)$ be a graph with vertex set *V* and edge set *E*. For a vertex v, the *open neighborhood* is the set $N(v) = \{u \in V\}$ *V*: *uv* \in *E*} and the *closed neighborhood* is *N*[*v*] = *N*(*v*) \cup {*v*}. The *degree* deg(*v*) of a vertex *v* in *G* is the number of edges incident to v.

The *subgraph of G induced by S* \subset *V* is the graph *G*[*S*] with vertex set *S* and edge set $\{uv \in E: u, v \in S\}$. In a graph *G* = (*V*, *E*), the *deletion of* $S ⊂ V$ *from G*, denoted by $G - S$, is the graph $G[V \setminus S]$. For a vertex v in *G*, we write $G - v$ for $G - \{v\}.$

In a graph, a *stable set* (or *independent set*) is a set of pairwise nonadjacent vertices, and a *clique* is a set of pairwise adjacent vertices. A *forest* is a graph without cycles. A *tree* is a connected forest. A *leaf* of a graph is a vertex with degree one. A vertex v is a *cut-vertex* if the number of connected components is increased after removing v. A *block* of a graph is a maximal connected subgraph without any cut-vertex. An *end-block* of a graph is a block containing at most one cut-vertex. A *block graph* is a graph whose blocks are cliques. A *cactus* is a connected graph whose blocks are either an edge or a cycle. A *block-cactus graph* is a graph whose blocks are cliques or cycles.

3. The labeling method for *k***-domination**

Labeling techniques are widely used in the literature for solving the domination problem and its variants [\[3](#page--1-0)[,8,](#page--1-12)[13](#page--1-13)[,15\]](#page--1-14). For *k*-domination, we employ the following labeling method which is similar to that in [\[15\]](#page--1-14). Given a graph *G*, a *k*-*dom assignment* is a mapping *L* that assigns each vertex v in *G* a two-tuple label $L(v) = (L_1(v), L_2(v))$, where $L_1(v) \in \{B, R\}$, and $L_2(v)$ is a nonnegative integer. Here a vertex v with $L_1(v) = R$ is called a *required vertex*; a vertex v with $L_1(v) = B$ is called a *bound vertex.* An *L*-*dominating set* of *G* is a subset $D \subseteq V(G)$ such that

- if $L_1(v) = R$, then $v \in D$, and
- if $L_1(v) = B$, then either $v \in D$ or $|N(v) \cap D| \ge L_2(v)$.

That is, *D* contains all required vertices, and for each bound vertex v not in *D*, v is adjacent to at least $L_2(v)$ vertices in *D*. The *L*-domination number $\gamma_1(G)$ is the minimum size of an *L*-dominating set in *G*, such set is called a γ_1 -set of *G*. Notice that if $L(v) = (B, k)$ for all $v \in V(G)$, then $\gamma_1(G) = \gamma_k(G)$. Thus an algorithm for $\gamma_1(G)$ gives $\gamma_k(G)$.

Lemma 1. Suppose G is a graph with a k-dom assignment $L = (L_1, L_2)$. For a vertex v in G, let $G' = G - v$ and let L' be the *restriction of* \hat{L} *on* $V(G')$ *with the modification that* $L'_2(u) = \max\{L_2(u) - 1, 0\}$ *for* $u \in N(v)$ *. If* $L_1(v) = R$ *or* $L_2(v) > deg(v)$ *, then* $\gamma_L(G) = \gamma_{L'}(G') + 1$ *.*

Proof. Suppose *D'* is a $\gamma_{L'}$ -set of *G'*. Set $D = D' \cup \{v\}$. Since *L'* is the restriction of *L* on $V(G')$ with the modification on $L'_2(u)$ and $L_2(u) \le L'_2(u) + 1$ for $u \in N(v)$, *D* is clearly an *L*-dominating set of *G*. Thus $\gamma_L(G) \le |D| = |D'| + 1 = \gamma_L(G') + 1$.

Conversely, suppose *D* is a γ_1 -set of *G*. By the assumption that $L_1(v) = R$ or $L_2(v) > \deg(v)$, *v* must be included in *D*. Set $D' = D \setminus \{v\}$. As *L'* is the restriction of *L* on *G'* with the modification on $L'_2(u)$ for $u \in N(v)$, D' is an *L'*-dominating set of *V*(*G*[']). Hence γ_L ^{*'*}(*G*[']) + 1 ≤ |*D*[']| + 1 = |*D*| = γ_L (*G*). □

This and the following lemma provide an alternative algorithm for the *k*-domination problem in trees.

Lemma 2. *Suppose G is a graph with a k-dom assignment* $L = (L_1, L_2)$ *. For a leaf* v of G adjacent to u, let $G' = G - v$ and let L' be the restriction of L on $V(G')$ with the modification described below.

(1) *If* $L(v) = (B, 1)$ *, then* $\gamma_L(G) = \gamma_{L'}(G')$ *, where* $L'_1(u) = R$ *.* (2) If $L(v) = (B, 0)$, then $\gamma_L(G) = \gamma_{L'}(G')$.

Proof. (1) Suppose *D'* is a $\gamma_{L'}$ -set of *G'*. Since $L'_1(u) = R$, we have $u \in D'$. Then *D'* is an *L*-dominating set of *G* as $|N(v) \cap D'| \geq 1 = L_2(v)$. Thus $\gamma_L(G) \leq |D'| = \gamma_{L'}(G')$.

 \overline{C} onversely, suppose *D* is a γ_1 -set of \overline{G} . Since $L_2(v)=1$, either *u* or v must be included in *D*. Then clearly $D'=(D\setminus\{v\})\cup\{u\}$ is an *L'*-dominating set of *G'*. Hence $\gamma_{L'}(G') \leq |D'| \leq |D| = \gamma_L(G)$.

(2) Suppose *D'* is a $\gamma_{L'}$ -set of *G'*. Since L' is the restriction of L on *G'* and $|N(v) \cap D'| \ge 0 = L_2(v)$, it is clear that *D'* is an *L*-dominating set of *G*. Thus $\gamma_L(G) \leq |D'| = \gamma_{L'}(G')$.

Conversely, suppose *D* is a γ_1 -set of *G*. If $v \notin D$, then $D' = D$ is an *L'*-dominating set of *G'*. If $v \in D$, then $D' = (D \setminus \{v\}) \cup \{u\}$ is an *L'*-dominating set of *G'*. Hence $\gamma_{L'}(G') \leq |D'| \leq |D| = \gamma_L(G)$. \Box

Download English Version:

<https://daneshyari.com/en/article/419682>

Download Persian Version:

<https://daneshyari.com/article/419682>

[Daneshyari.com](https://daneshyari.com)