Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Minimally 3-restricted edge connected graphs*

Qinghai Liu, Yanmei Hong, Zhao Zhang*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

ARTICLE INFO

Article history: Received 12 December 2007 Received in revised form 13 June 2008 Accepted 31 July 2008 Available online 27 August 2008

Keywords: Fault tolerance Restricted edge connectivity

1. Introduction

ABSTRACT

For a connected graph G = (V, E), an edge set $S \subset E$ is a 3-restricted edge cut if G - S is disconnected and every component of G - S has order at least three. The cardinality of a minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by $\lambda_3(G)$. A graph G is called minimally 3-restricted edge connected if $\lambda_3(G - e) < \lambda_3(G)$ for each edge $e \in E$. A graph G is λ_3 -optimal if $\lambda_3(G) = \xi_3(G)$, where $\xi_3(G) = \max\{\omega(U) : U \subset V(G), G[U]$ is connected, $|U| = 3\}$, $\omega(U)$ is the number of edges between U and $V \setminus U$, and G[U] is the subgraph of G induced by vertex set U. We show in this paper that a minimally 3-restricted edge connected graph is always λ_3 -optimal except the 3-cube.

© 2008 Elsevier B.V. All rights reserved.

A network can be conveniently modeled as a graph G = (V, E). A classic measure of the fault tolerance of a network is the edge connectivity $\lambda(G)$. In general, the larger $\lambda(G)$ is, the more reliable the network is [2]. A more refined measure known as restricted edge connectivity was proposed by Esfahanian and Hakimi [5], which was further generalized to *k*-restricted edge connectivity by Fábrega and Fiol [6] (called *k*-extra edge connectivity in their paper).

Let *G* be a connected graph. An edge set $S \subset E(G)$ is said to be a *k*-restricted edge cut of *G* if G - S is disconnected and each component of G - S has at least *k* vertices. The minimum cardinality of a *k*-restricted edge cut is called the *k*-restricted edge connectivity of *G*, denoting by $\lambda_k(G)$. A *k*-restricted edge cut *S* with $|S| = \lambda_k(G)$ is called a λ_k -cut. Not all graphs have λ_k -cuts [4,5,12,21]. Those which do have λ_k -cuts are called λ_k -connected graphs. According to current studies on *k*-restricted edge connectivity [10,11,13,17], it seems that the larger $\lambda_k(G)$ is, the more reliable the network is. In [21], Zhang and Yuan proved that $\lambda_k(G) \leq \xi_k(G)$ holds for any integer $k \leq \delta(G) + 1$ except for a class of graphs (such a graph is constructed from a set of complete subgraphs K_δ by adding a new vertex *u* and connect *u* to every other vertex), where $\delta(G)$ is the minimum degree of *G* and $\xi_k(G) = \min\{\omega(U) : U \subset V(G), G[U]$ is connected, $|U| = k\}, \omega(U)$ is the number of edges between *U* and $V \setminus U$, and G[U] is the subgraph of *G* induced by *U*. A graph *G* is called λ_k -optimal if $\lambda_k(G) = \xi_k(G)$. There is much research on sufficient conditions for a graph to be λ_k -optimal, such as symmetric conditions [11,13,17,18], degree conditions [14,15, 19], and girth-diameter conditions [1,6,16,20]. For more information on this topic, we refer the readers to the nice survey paper by Hellwig and Volkmann [7].

In this paper, we give another type of sufficient condition called a minimally restricted edge connected condition. A graph *G* is a minimally *k*-restricted edge connected graph (minimally λ_k -graph for short) if $\lambda_k(G - e) < \lambda_k(G)$ (and thus $\lambda_k(G - e) = \lambda_k(G) - 1$) for each edge $e \in E(G)$. It is implied in the definition that $\lambda_k(G - e)$ exists for each edge *e*. If *e* is a pending edge, then G - e does not have λ_k -cut for $k \ge 2$. So, we always assume $\delta(G) \ge 2$ when *G* is a minimally λ_k -graph for some $k \ge 2$. A minimally λ_1 -graph is exactly a minimally edge connected graph, which has been shown to be λ -optimal ([9] Exercise 49). In [8], the authors have proved that every minimally λ_2 -graph is λ_2 -optimal. In this paper, we show that every minimally λ_3 -graph is always λ_3 -optimal except the 3-cube.

* Corresponding author. Tel.: +86 13899960204; fax: +86 991 8585505. *E-mail address:* zhzhao@xju.edu.cn (Z. Zhang).

[🌣] This research is supported by NSFC (60603003), the Key Project of Chinese Ministry of Education (208161) and XJEDU.

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.07.009

2. Preliminaries and terminologies

Let G = (V, E) be a graph. For two disjoint vertex sets $U_1, U_2 \subset V(G)$, denote by $[U_1, U_2]_G$ the set of edges of G with one end in U_1 and the other end in U_2 , G[U] is the subgraph of G induced by vertex set $U \subset V(G)$, $\overline{U} = V(G) \setminus U$ is the complement of U, $\omega_G(U) = |[U, \overline{U}]_G|$ is the number of edges between U and \overline{U} . When the graph under consideration is obvious, we omit the subscript G. Write $d_A(U) = |[U, A \setminus U]|, d_A(u) = d_A(\{u\})$. Sometimes, we use a graph itself to represent its vertex set. For example, $\omega(C)$ is used instead of $\omega(V(C))$, where C is a subgraph of G; for an edge $e = uv, d_A(e)$ is used instead of $d_A(\{u, v\})$, etc.

A λ_3 -fragment is a subset U of V(G) with $[U, \overline{U}]$ being a λ_3 -cut. If U is a λ_3 -fragment, then so is \overline{U} , and both G[U] and $G[\overline{U}]$ are connected. A λ_3 -fragment with minimum order is called a λ_3 -atom. The order of a λ_3 -atom is denoted by $\alpha_3(G)$. Clearly, $\alpha_3(G) \leq |V(G)|/2$.

A graph *H* is λ_3 -*independent* if each component of *H* has at most two vertices. A connected graph of order at most two is λ_3 -*trivial*. A graph is called λ_3 -*non-trivial* if it has a component which contains at least three vertices.

The following two observations will be used frequently without mentioning them explicitly. The first is that if two connected subgraphs G_1 and G_2 have nonempty intersection, then $G_1 \cup G_2$ is also connected. The second is that for a vertex set *F* of a connected graph *G* and a component *C* of G - F, if G[F] is connected, then so is G - C.

For terminologies not given here, we refer to [3] for reference.

3. Main result

First, it should be noted that if $\alpha_3(G) = 3$, then *G* is λ_3 -optimal. In fact, Bonsma et al. [4] have proved that $\lambda_3(G) \le \xi_3(G)$ holds for any λ_3 -connected graph *G*. On the other hand, considering a λ_3 -atom *A* of *G*, we have $\lambda_3(G) = \omega(A) \ge \xi_3(G)$. So, $\lambda_3(G) = \xi_3(G)$. In view of this observation, to derive our main theorem, it suffices to show that $\alpha_3(G) = 3$. In the following, we prove that if *G* is a minimally 3-restricted edge connected graph with $\alpha_3(G) \ge 4$, then *G* is isomorphic to 3-cube.

Lemma 1. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$, *F* be a subset of *G* with $G[\overline{F}]$ being connected. If one of the following conditions is satisfied:

(a) $\omega(F) < \lambda_3(G)$, or (b) $\omega(F) = \lambda_3(G)$ and $|F| < \alpha_3(G)$,

then G[F] is λ_3 -independent.

Proof. Suppose *F* has a λ_3 -non-trivial component *C*. Since $G[\overline{C}]$ is connected, we have $\omega(F) \ge \omega(C) \ge \lambda_3(G)$, which is clearly a contradiction to condition (a). If condition (b) occurs, then $\omega(F) = \omega(C) = \lambda_3(G)$. Hence V(C) is a λ_3 -fragment. But then $|F| \ge |C| \ge \alpha_3(G)$, contradicting $|F| < \alpha_3(G)$. \Box

Lemma 2. Let G be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, A be a λ_3 -atom of G, and B be a λ_3 -fragment of G.

- (a) If a subset U of A is such that G[U] is connected and $G[A \setminus U]$ has a λ_3 -non-trivial component, then $d_A(U) > d_{\overline{A}}(U)$.
- (b) If a subset U of B is such that G[U] is connected and $G[B \setminus U]$ has a λ_3 -non-trivial component, then $d_B(U) \ge d_{\overline{R}}(U)$.
- (c) $\delta(G[A]) \ge 2$.

Proof. (a). Suppose $d_A(U) \leq d_{\overline{A}}(U)$. Then $\omega(A \setminus U) = \omega(A) + d_A(U) - d_{\overline{A}}(U) \leq \omega(A) = \lambda_3(G)$. By noting that $|A \setminus U| < |A| = \alpha_3(G)$, it follows from Lemma 1 that $G[A \setminus U]$ is λ_3 -independent, a contradiction.

- (b). The proof of (b) is similar to that of (a); note that under the assumption $d_B(U) < d_{\overline{B}}(U)$, it can be deduced that $\omega(B \setminus U) < \lambda_3(G)$.
- (c) is a consequence of (a). In fact, for each vertex $x \in A$, if A x is λ_3 -independent, then $d_A(x) \ge 2$ since $|A| \ge 4$. If A - x contains a λ_3 -non-trivial component, taking $U = \{x\}$ in (a), we have $d_A(x) > d_{\overline{A}}(x)$. Then it follows from $d_A(x) > \frac{1}{2} \cdot (d_A(x) + d_{\overline{A}}(x)) = \frac{1}{2} \cdot d_G(x) \ge 1$ that $d_A(x) \ge 2$. \Box

Similar to Lemma 2, we can prove the following lemma. The key observation to the proof, as well as some proofs after it, is that for any edge $e \in E(G)$, if $\lambda_3(G - e) < \lambda_3(G)$, then any λ_3 -fragment of G - e contains exactly one end of e, and is a λ_3 -fragment of G. Note that the observation is true when G is minimally 3-restricted edge connected.

Lemma 3. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, e = uv be an edge of *G*, $\lambda_3(G - e) < \lambda_3(G)$, *A* be a λ_3 -atom of *G* - *e* with $u \in A$ and $v \notin A$.

- (a) If a subset U of A is such that G[U] is connected, G[A] U has a λ_3 -non-trivial component, and e is not incident with U, then $d_A(U) > d_{\overline{A}}(U)$.
- (b) $d_{G[A]}(x) \ge 2$ for each $x \ne u \in A$.

Lemma 4. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, *A* be a λ_3 -atom of *G*, *B* be a λ_3 -fragment of *G*, $A \cap B \neq \emptyset$. Then for any component *C* of *G*[$A \cap B$], either *G*[A] – *C* or *G*[B] – *C* is λ_3 -independent. Download English Version:

https://daneshyari.com/en/article/419743

Download Persian Version:

https://daneshyari.com/article/419743

Daneshyari.com