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a b s t r a c t

A generalized formulation for assembly line balancing problem (GALBP) is considered,
where several workplaces are associated with each workstation. Thus, all tasks assigned
to the sameworkstation have to be partitioned into blocks: each block regroups all tasks to
be performed at the same workplace. The product items visit all workplaces sequentially,
therefore, all blocks are proceeded in a sequential way. However, the tasks grouped into
the same block are executed simultaneously. As a consequence, the execution of a block
takes only the time of its longest task. This parallel execution modifies the manner to take
into account the cycle time constraint. Precedence and exclusion constraints also exist for
workstations and theirworkplaces. The objective is to assign all given tasks toworkstations
andworkplaces whileminimizing the line cost estimated as aweighted sum of the number
of workstations and workplaces. The goal of this article is to propose a stability measure
for feasible and optimal solutions of this problem with regard to possible variations of the
processing time of certain tasks. A heuristic procedure providing a compromise between
the objective function and the suggested stability measure is developed and evaluated on
benchmark data sets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The design of a typical flow-oriented paced production line is considered. The line consists of a number of workstations
aligned serially along a conveyor belt. Identical product items are consequently launched down the line and processed
at every workstation in the order of their location. A workstation deals with only one product item at a time. The items
are transferred from their current workstation to the next one at the end of each time interval called line cycle time. All
workstations function simultaneously performing elementary tasks assigned to them. Tasks can be executed by a human
operator or using special automatic machines installed at workstations.

The design aim is to partition the given set of all elementary tasks into workstations while respecting existing
technological and economical constraints and optimizing one or several objectives. The set of tasks assigned to aworkstation
determines its load. The working time of a workstation on a product item must not be greater than the cycle time. A
workstation with the greatest working time is called themost loaded.

This optimization problem is one of the important issues of managing assembly lines. Its simple version, the simple
assembly line balancing problem or SALBP, takes into account only precedence and cycle time constraints where the sum of
tasks assigned to the sameworkstationmust be not greater than the cycle time.With regard to objectives employed, SALBPs
are commonly classified into three types [25,33]: minimize the total number of opened workstations for a fixed line cycle
time (SALBP-1);minimize theworking time on themost loadedworkstationwith a fixed number ofworkstations (SALBP-2);
and if neither the number of workstations nor line cycle time is fixed, maximize the line efficiency (SALBP-E). The latter
objective minimizes the number of opened workstations×working time on the most loaded one. It should be emphasized
that all these problems are known to be N P -hard [26, Chapter 2.2.1.5].
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In this paper, a generalization of SALBP-1 is considered. Namely, it is supposed that each workstation is equipped with
one or severalworkplaces (blocks) activated sequentially. At the same time, the tasks assigned to the sameworkplace (block)
are executed simultaneously. Therefore, the working time on a workstation is determined as the sum of the working time
of blocks belonging to this workstation, while the working time of a block is determined as the maximal processing time
among the tasks assigned to it. The goal is to minimize the number of used equipment (i.e. the total number of workstations
and workplaces). Several industrial examples of such lines can be found in [2,10,15–17] where blocks correspond to multi-
spindle heads and workstations to unit-built machines.

In SALBPs, all task processing times were considered deterministic. However, these times may vary during the line
lifecycle because of multiple factors, such as: operator skill, motivation and fatigue, changes in material composition of
product items, product and workstation characteristics, etc. To take into account the variability of processing times, the
followingmodels are often used in the literature: stochastic processing times [1,3,9,12,13,23,35] and fuzzy processing times [14,
20,34].

For stochastic models, task processing times are commonly assumed to be normally distributed independent random
variables with known means and variances. In this case, chance constraints can be introduced. These constraints assure
that the probability of the respect of the cycle time for each workstation will be greater than a pre-determined confidence
level that is usually equal to 0.95. In fuzzy models, task processing times are represented by fuzzy intervals with given
membership functions (possibility distributions) giving the grade of satisfaction of a decision maker. In that case, the
assignment of tasks to workstations is implemented with respect to an introduced fuzzy arithmetic.

However, it should be noted that the application of these two models in practice is a difficult task. Indeed, available
knowledge on input data is not always sufficient to deduct appropriate probability or possibility distribution functions for
task processing times, especially if the design of an assembly line is planed just for one time. More often, a decision maker
can only indicate a subset of tasks which processing times are subject to frequent variations. In such cases, another model
can be suggested, where the set of given tasks is divided into 2 subsets of constant and variable tasks. This approach was
used by Sotskov et al. [28] for SALBP-1. The authors studied the influence of variations of task processing times (VTPT) on
optimal solutions constructed for completely deterministic problem. The principal goal of this approach is to determine the
limit level of independent VTPT (named the stability radius) under which a solution remains optimal. The stability radius is
an appropriate measure of credibility of known solutions in presence of VTPT. If the stability radius is known, then will be
no need to reconstruct an optimal solution if the VTPT observed do not exceed it.

Note that similar approaches have been already studied for different types of combinatorial optimization problems,
where alongwith the stability radius, anothermeasure of sensitivity called sensitivity interval (the interval of one parameter
where the solution preserves its optimality) was investigated. In what follows, we present a short review of these
approaches.

Belgacem, Hifi et al. studied the sensitivity of an optimal solution for knapsack and sharing knapsack problems [4–7,
18,19] subject to perturbations of profits and weights of the problem. The authors proposed algorithms for calculating the
sensitivity intervals for these parameters or, as it was done in [19], while seeking an optimal solution, they adapted a branch
and bound technique for calculating this interval.

In [22,36], the authors studied different aspects of sensitivity for the salesman problem. In particular, they considered
the problem of seeking k best solutions under the condition that an optimal solution and its stability radius are known. A
polynomial algorithm for this problem was presented for k = 2, and it was proved that it is N P -hard for k > 2.

In [24], the authors considered the shortest path problem for the undirected graphs with m edges. They proved that the
sensitivity interval for the length of an edge can be calculated in O(m + k log k), where k is the number of edges of the
optimal path studied.

Bräsel et al. [8], Kravchenko et al. [21], Sotskov [27] and Sotskov et al. [29–32] study the stability radius of an optimal
solution in scheduling under job time uncertainty. Their works are applied on the large range of scheduling problems
essentially for job shop and open shop types. They presented the necessary and sufficient conditions for the existence of
the strictly positive stability radius as well as the formula of its calculation.

In this paper, we study the stability aspects for both feasible and optimal solutions for a generalized assembly line
balancing problem with workplaces of parallel tasks. The remainder of the paper is organized as follows. In Section 2,
basic definitions and properties are introduced. Sections 3–5 are devoted to the calculation of the stability radius for
feasible, quasi-feasible (see the definition in Section 2), and optimal solutions, respectively. A heuristic procedure to find
a compromise between the values of the objective function and the stability radius of a feasible solution is described in
Section 6. Experimental results carried out on industrial case benchmarks are analyzed in Section 6.3. Final remarks and
conclusions are given in Section 7.

2. Basic definitions and properties

2.1. Feasible, quasi-feasible and optimal solutions

All elementary tasks required to be performed constitute a given set V = {1, 2, . . . , n} associated with a vector
t = (t1, t2, . . . , tn) ∈ Rn

+
of processing times, where tj is the processing time of task j ∈ V and R+ is the set of all positive

real numbers. In this paper, we consider that set V contains two types of tasks:
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