Contents lists available at ScienceDirect ### **Discrete Applied Mathematics** # The Ramsey number for a cycle of length six versus a clique of order eight Yaojun Chen^{a,*}, T.C. Edwin Cheng^b, Ran Xu^a #### ARTICLE INFO Article history: Received 6 June 2007 Received in revised form 26 February 2008 Accepted 15 April 2008 Available online 27 May 2008 Keywords: Ramsey number Cycle Complete graph #### ABSTRACT For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or the complement of G contains G_2 . Let G_m denote a cycle of length m and G_n a complete graph of order G_n . In this paper, it is shown that G_n is G_n in © 2008 Elsevier B.V. All rights reserved. #### 1. Introduction All graphs considered in this paper are finite simple graph without loops. For two given graphs \underline{G}_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or G contains G_2 , where G is the complement of G. The neighborhood G of a vertex G is the set of vertices adjacent to G in G and G of G is denoted by G of a vertex G is the set of vertices adjacent to G in G and G of G is denoted by G of a vertex G is denoted by G of and G of G is denoted by G of an G of G is denoted by G of an G of G of the edges between G and G of G of an G of o The cycle-complete graph Ramsey number $R(C_m, K_n)$ was first studied by Erdös et al. in [5]. In the paper, they asked the following. **Question 1** (*Erdös et al.* [5]). For a given n, what is the smallest value of m such that $R(C_m, K_n) = (m-1)(n-1) + 1$? Furthermore, they posed the following. **Conjecture 1** (*Erdös et al.* [5]). $R(C_m, K_n) = (m-1)(n-1) + 1$ for $m \ge n \ge 3$ and $(m, n) \ne (3, 3)$. The conjecture was confirmed for n = 3 in early works on Ramsey theory [6,9]. Yang et al. [11] proved the conjecture for n = 4. ^a Department of Mathematics, Nanjing University, Nanjing 210093, PR China ^b Department of Logistics, The Hong Kong Polytechnic University, Hung Kom, Kowloon, Hong Kong, China ^{*} Corresponding author. E-mail address: yaojunc@nju.edu.cn (Y. Chen). **Table 1** Known Ramsey numbers $R(C_m, K_n)$ for $m \le n - 1$ | | K_4 | K ₅ | <i>K</i> ₆ | <i>K</i> ₇ | K ₈ | K ₉ | |----------------|-------|----------------|-----------------------|-----------------------|----------------|----------------| | C ₃ | 9 | 14 | 18 | 23 | 28 | 36 | | C_4 | | 14 | 18 | 22 | 26 | | | C_5 | | | 21 | 25 | | | | C_6 | | | | 31 | | | | C ₇ | | | | | 43 | | **Theorem 1** (Yang et al. [11]). $R(C_m, K_4) = 3m - 2$ for $m \ge 4$. Bollobás et al. [1] showed that the conjecture is true for n = 5. **Theorem 2** (Bollobás et al. [1]). $R(C_m, K_5) = 4m - 3$ for $m \ge 5$. Schiermeyer [10] confirmed the conjecture for n = 6. **Theorem 3** (*Schiermeyer* [10]). $R(C_m, K_6) = 5m - 4$ for $m \ge 6$. Chen et al. [3] proved the conjecture for the case when n = 7. **Theorem 4** (*Chen et al.* [3]). $R(C_m, K_7) = 6m - 5$ for $m \ge 7$. So far, the conjecture is still open. All the results obtained indicate that the conjecture is true. However, it seems hard to understand the behavior of the Ramsey number $R(C_m, K_n)$ for the case when $m \le n-1$. One reason for this may be that $R(C_3, K_n)$ is the classical Ramsey number R(3, n) and the classical Ramsey numbers are very hard to determine. By now, only 14 exact values of $R(C_m, K_n)$ for $m \le n-1$, including 6 classical Ramsey numbers, are known, see Table 1. All the details in Table 1 can be found in the dynamic survey [8]. In this paper, we calculate the value of the Ramsey number $R(C_6, K_8)$. The main result is the following. **Theorem 1.** $R(C_6, K_8) = 36$. **Remark.** Let f(n) be the smallest value of m such that $R(C_m, K_n) = (m-1)(n-1) + 1$ for a given n. By the known results (see [8]), we have f(3) = 4, f(4) = 4, f(5) = 5, f(6) = 5 and f(7) = 5. Obviously, Theorem 1 shows that $f(8) \le 6$. It is not known by now whether f(8) = 5 holds. In general, we have the following. **Question 2.** Does there exist a constant N such that f(n) < N? Furthermore, is it true that f(n) = 5 for n > 5? #### 2. Preliminaries **Lemma 1** (*McKay and Zhang* [7]). $R(K_3, K_8) = 28$. **Lemma 2** (*Cheng et al.* [4]). $R(C_6, K_7) = 31$. **Lemma 3.** Let G be a graph of order 36 with $\alpha(G) \leq 7$. If G contains no C_6 , then $\delta(G) \geq 5$. **Proof.** If there is some vertex v such that $d(v) \le 4$, then G' = G - N[v] is a graph of order at least 31. By Lemma 2, $\alpha(G') \ge 7$. Thus, an independent set of order at least 7 in G' together with v form an independent set of order at least 8 in G, which contradicts $\alpha(G) < 7$. **Lemma 4.** Let G be a graph of order 36 with $\alpha(G) < 7$. If G contains no C_6 , then G contains no K_5 . **Proof.** Suppose to the contrary that $K_5 = H \subset G$ with $V(H) = \{w_i \mid 0 \le i \le 4\}$. Set U = V(G) - V(H). By Lemma 3, $\delta(G) \ge 5$. Thus, we have $N_U(w_i) \ne \emptyset$ for $0 \le i \le 4$. Let $v_i \in N_U(w_i)$ and $V_i = N_U[v_i]$, where $0 \le i \le 4$. Since G contains no G, we have $$N(V_i) \cap V(H) = \{w_i\} \text{ for } 0 \le i \le 4,$$ (1) $$V_i \cap V_j = \emptyset \quad \text{for } 0 \le i < j \le 4, \tag{2}$$ and $$E(V_i, V_j) = \emptyset \quad \text{for } 0 \le i < j \le 4. \tag{3}$$ By (1), we have $d_H(v_i) = 1$, which implies $|V_i| \ge 5$ for $0 \le i \le 4$ since $\delta(G) \ge 5$. Assume without loss of generality that $\alpha(V_0) \ge \alpha(V_1) \ge \alpha(V_2) \ge \alpha(V_3) \ge \alpha(V_4)$. #### Download English Version: ## https://daneshyari.com/en/article/419784 Download Persian Version: https://daneshyari.com/article/419784 Daneshyari.com