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a b s t r a c t

The use of boxes for pattern classification has beenwidespread and is a fairly naturalway in
which to partition data into different classes or categories. In this paper we consider multi-
category classifiers which are based on unions of boxes. The classification method studied
may be described as follows: find boxes such that all points in the region enclosed by each
box are assumed to belong to the same category, and then classify remaining points by
considering their distances to these boxes, assigning to a point the category of the nearest
box. This extends the simple method of classifying by unions of boxes by incorporating a
natural way (based on proximity) of classifying points outside the boxes. We analyze the
generalization accuracy of such classifiers and we obtain generalization error bounds that
depend on a measure of how definitive is the classification of training points.

© 2012 Elsevier B.V. All rights reserved.

1. Box-based multi-category classifiers

Classification in which each category or class is a union of boxes is a long-studied and natural method for pattern
classification. It is central, for instance, to the methods used for logical analysis of data (see, for example [9,10,15,5]) and
has been more widely studied as a geometrical classifier (see [11], for instance). More recently, unions of boxes have
been used in combination with a nearest-neighbor (or proximity) paradigm for binary classification [6] and multi-category
classification [13], enabling meaningful classification for points of the domain that lie outside any of the boxes.

In this paper, we analyzemulti-category classifiers of the type described by Felici et al. [13]. In that paper, they describe a
set of classifiers based on boxes and nearest-neighbors, where the metric used for the nearest-neighbor measure is the
Manhattan (or taxicab) metric. (We give explicit details shortly.) They use an agglomerative box-clustering method to
produce a set of candidate classifiers of this type. They then select from these one that is, in a sense they define, optimal. First
they focus on the classifiers which are, with respect to the two dimensions of the error on the sample, E, and complexity
(number of boxes), B, Pareto-optimal. Among these they then select a classifier that minimizes an objective function of the
form (E − E0)2 + (B − B0)

2 (effecting a tradeoff between the error and complexity) and, if there is more than one such
classifier, they choose that which minimizes E. They provide some experimental evidence that this approach works. Here,
we obtain generalization error bounds for the box-based classifiers of the type considered in [13], within a version of the
standard PAC model of probabilistic learning. The bounds we obtain depend on the error and complexity and they improve
(that is, they decrease) the more ‘definite’ is the classification of the sample points.

Suppose points of [0, 1]n are to be classified into C classes, which we will assume are labeled 1, 2, . . . , C . We let [C]

denote the set {1, 2, . . . , C}.
A box (or, more exactly, an axis-parallel box) in Rn is a set of the form

I(u, v) = {x ∈ Rn
: ui ≤ xi ≤ vi, 1 ≤ i ≤ n},
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Fig. 1. Boxes of three categories.

where u, v ∈ [0, 1]n and u ≤ v, meaning that ui ≤ vi for each i. We consider multi-category classifiers which are based on
C unions of boxes, as we now describe. For k = 1, . . . , C , suppose that Sk is a union of some number, Bk, of boxes:

Sk =

Bk
j=1

I(u(k, j), v(k, j)).

Here, the jth box is defined by u(k, j), v(k, j) where u(k, j), v(k, j) ∈ [0, 1]n and u(k, j) ≤ v(k, j) (so, for each i between 1
and n, u(k, j)i ≤ v(k, j)i). We assume, further, that for k ≠ l, Sk ∩ Sl = ∅. We think of Sk as being a region of the domain
all of whose points we assume to belong to class k. So, as in [13,15], for instance, the boxes in Sk might be constructed by
‘agglomerative’ box-clustering methods.

To define our classifiers, we will make use of a metric on [0, 1]n. To be specific, as in [13], dwill be the d1 (or ‘Manhattan’
or ‘taxicab’) metric: for x, y ∈ [0, 1]n,

d(x, y) =

n
i=1

|xi − yi|.

We could equally well (as in [6], where the two-class case is the focus) use the supremum or d∞ metric, defined by

d∞(x, y) = max{|xi − yi| : 1 ≤ i ≤ n}

and similar results would be obtained. For x ∈ [0, 1]n and S ⊆ [0, 1]n, the distance from x to S is

d(x, S) = inf
y∈S

d(x, y).

Let S = (S1, S2, . . . , SC ) and denote by hS the classifier from [0, 1]n into [C] defined as follows: for x ∈ [0, 1]n,

hS(x) = argmin1≤k≤Cd(x, Sk),

where if d(x, Sk) is minimized for more than one value of k, one of these is chosen randomly as the value of hS . So, in other
words, the class label assigned to x is kwhere Sk is the closest to x of the regions S1, S2, . . . , SC . We refer to B = B1 +· · ·+BC
as the number of boxes in S and in hS . We will denote by HB the set of all such classifiers where the number of boxes is B.
The set of all possible classifiers we consider is then H =


∞

B=1 HB.
These classifiers, therefore, are based, as a starting point, on regions assumed to be of particular categories. These regions

are each unions of boxes, and the regions do not overlap. (In practice, these boxes and the corresponding regions will likely
have been constructed directly from a training sample by finding boxes containing sample points of a particular class, and
merging, or agglomerating these; see [13].) See, for example, Fig. 1. The three types of boxes are indicated, and the pale gray
region is the region not covered by any of the boxes.

Then, for all other points of the domain, the classification of a point is given by the class of the region to which it is
closest (in the d1 metric). For the initial configuration of boxes indicated in Fig. 1, the final classification of the whole
domain is as indicated in Fig. 2. Bounding lines for the boxes have been inserted in these figures to make it easier to see
the correspondence between them.

These classifiers seem quite natural, from a geometrical point of view, and unlike ‘black-box’ classifiers (such as neural
networks), can be described and understood: there are box-shaped regions where we assert a known classification, and the
classification elsewhere is determined by an arguably fairly sensible nearest-neighbor approach.
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