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a b s t r a c t

The well-known spanning tree packing theorem of Nash-Williams and Tutte characterizes
graphs with k edge-disjoint spanning trees. Edmonds generalizes this theorem tomatroids
with k disjoint bases. For any graph G thatmay not have k-edge-disjoint spanning trees, the
problem of determining what edges should be added to G so that the resulting graph has
k edge-disjoint spanning trees has been studied by Haas (2002) [11] and Liu et al. (2009)
[17], among others. This paper aims to determine, for a matroidM that has k disjoint bases,
the set Ek(M) of elements inM such that for any e ∈ Ek(M),M − e also has k disjoint bases.
Using thematroid strength defined by Catlin et al. (1992) [4], we present a characterization
of Ek(M) in terms of the strength ofM . Consequently, this yields a characterization of edge
sets Ek(G) in a graph G with at least k edge-disjoint spanning trees such that ∀e ∈ Ek(G),
G− e also has k edge-disjoint spanning trees. Polynomial algorithms are also discussed for
identifying the set Ek(M) in a matroidM , or the edge subset Ek(G) for a connected graph G.

© 2012 Published by Elsevier B.V.

1. Introduction

The number of edge-disjoint spanning trees in a network, when modeled as a graph, often represents certain strength of
the network [8]. The well-known spanning tree packing theorem of Nash-Williams [18] and Tutte [23] characterizes graphs
with k edge-disjoint spanning trees, for any integer k > 0. For any graph G, the problem of determining which edges should
be added to G so that the resulting graph has k edge-disjoint spanning trees has been studied; see [11,17], among others.
However, it has not been fully studied that for an integer k > 0, if a graph G has k edge-disjoint spanning trees, what kind of
edge e ∈ E(G) has the property that G− e also has k-edge-disjoint spanning trees. The research of this paper is motivated by
this problem. In fact, we will consider the problem that, if a matroidM has k disjoint bases, what kind of element e ∈ E(M)
has the property thatM − e also has k disjoint bases.

We consider finite graphs with possible multiple edges and loops, and follow the notation of Bondy and Murty [1] for
graphs, and Oxley [19] or Welsh [24] for matroids, except otherwise defined. Thus for a connected graph G, ω(G) denotes
the number of components of G. For a matroidM , we use ρM (or ρ, when the matroidM is understood from the context) to
denote the rank function ofM , and E(M), C(M) and B(M) to denote the ground set ofM , and the collections of the circuits
and the bases of M , respectively. Furthermore, if M is a matroid with E = E(M), and if X ⊂ E, then M − X is the restricted
matroid of M obtained by deleting the elements in X from M , and M/X is the matroid obtained by contracting elements in
X from M . As in [19,24], we use M − e forM − {e} and M/e for M/{e}.
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The spanning tree packing number of a connected graph G, denoted by τ(G), is the maximum number of edge-disjoint
spanning trees in G. A survey on spanning tree packing number can be found in [20]. By definition, τ(K1) = ∞. For a
matroid M , we similarly define τ(M) to be the maximum number of disjoint bases of M . Note that by definition, if M is a
matroid with ρ(M) = 0, then for any integer k > 0, τ (M) ≥ k. The following theorems are well known.

Theorem 1.1 (Nash-Williams [18] and Tutte [23]). Let G be a connected graph with E(G) ≠ ∅, and let k > 0 be an integer. Then
τ(G) ≥ k if and only if for any X ⊆ E(G), |E(G − X)| ≥ k(ω(G − X) − 1).

Theorem 1.2 (Edmonds [9]). Let M be a matroid with ρ(M) > 0. Then τ(M) ≥ k if and only if ∀X ⊆ E(M), |E(M) − X | ≥

k(ρ(M) − ρ(X)).

LetM be a matroid with rank function r . For any subset X ⊆ E(M) with ρ(X) > 0, the density of X is

dM(X) =
|X |

ρM(X)
.

When thematroidM is understood from the context,we often omit the subscriptM .We also use d(M) for d(E(M)). Following
the terminology in [4], the strength η(M) and the fractional arboricity γ (M) ofM are respectively defined as

η(M) = min{d(M/X) : ρ(X) < ρ(M)}, and γ (M) = max{d(X) : ρ(X) > 0}.

Thus Theorem 1.2 above indicates that

τ(M) = ⌊η(M)⌋. (1)

For an integer k > 0 and a matroid M with τ(M) ≥ k, we define Ek(M) = {e ∈ E(M) : τ(M − e) ≥ k}. Likewise, for
a connected graph G with τ(G) ≥ k, Ek(G) = {e ∈ E(G) : τ(G − e) ≥ k}. Using Theorem 1.1, Gusfield proved that high
edge-connectivity of a graph would imply high spanning tree packing number.

Theorem 1.3 (Gusfield [10]). Let k > 0 be an integer, and let κ ′(G) denote the edge-connectivity of a graph G. If κ ′(G) ≥ 2k,
then τ(G) ≥ k.

The next result strengthens Gusfield’s theorem, and indicates a sufficient condition for a graph G to satisfy Ek(G) = E(G).

Theorem 1.4 (Theorem 1.1 of [5]). Let k > 0 be an integer, and let κ ′(G) denote the edge-connectivity of a graph G. Then
κ ′(G) ≥ 2k if and only if ∀X ⊆ E(G) with |X | ≤ k, τ (G − X) ≥ k. In particular, if κ ′(G) ≥ 2k, then Ek(G) = E(G).

A natural question is to characterize all graphs G with the property Ek(G) = E(G). More generally, for any graph G with
τ(G) ≥ k, we are to determine the edge subset Ek(G). These questions can be presented in terms of matroids in a natural
way. The main purpose of this paper is to characterize Ek(M), for any matroid with τ(M) ≥ k. The next theorem is our main
result.

Theorem 1.5. Let M be a matroid and k > 0 be an integer. Each of the following holds.

(i) Suppose that τ(M) ≥ k. Then Ek(M) = E(M) if and only if η(M) > k.
(ii) In general, Ek(M) equals the maximal subset X ⊆ E(M) such that η(M|X) > k.

For a connected graph G with M(G) denoting its cycle matroid, let η(G) = η(M(G)) and γ (G) = γ (M(G)). Then
Theorem 1.5, when applied to cycle matroids, yields the corresponding theorem for graphs.

Corollary 1.6. Let G be a connected graph and k > 0 be an integer. Each of the following holds.

(i) If τ(G) ≥ k, Ek(G) = E(G) if and only if η(G) > k.
(ii) In general, Ek(G) equals the maximal subset X ⊆ E(G) such that every component of η(G[X]) > k.

In the next section, we shall discuss properties of the strength and the fractional arboricity of a matroidM , which will be
useful in the proofs of our main results. We will prove a decomposition theorem in Section 3, which will be applied in the
characterizations of Ek(M) and Ek(G) in Section 4. In the last section, we shall develop polynomial algorithms to locate the
sets Ek(M) and Ek(G).

2. Strength and fractional arboricity of a matroid

Both parameters η(M) and γ (M), and the problems related to uniformly dense graphs and matroids (defined below)
have been studied by many; see [4,2,3,6,7,13–15,15,21,22], among others. From the definitions of d(M), η(M) and γ (M),
we immediately have, for any matroidM with ρ(M) > 0,

η(M) ≤ d(M) ≤ γ (M). (2)
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