Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Characterization of removable elements with respect to having *k* disjoint bases in a matroid

Ping Li^a, Hong-Jian Lai^{b,c,*}, Yanting Liang^d

^a Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

^b College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

^c Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^d Department of Mathematics, University of Wisconsin-Fond du Lac, Fond du Lac, WI 54935, USA

ARTICLE INFO

Article history: Received 3 June 2010 Received in revised form 24 March 2012 Accepted 8 July 2012 Available online 28 July 2012

Keywords: Disjoint bases Edge-disjoint spanning trees Spanning tree packing numbers Strength Fractional arboricity Polynomial algorithm

ABSTRACT

The well-known spanning tree packing theorem of Nash-Williams and Tutte characterizes graphs with *k* dege-disjoint spanning trees. Edmonds generalizes this theorem to matroids with *k* disjoint bases. For any graph *G* that may not have *k*-edge-disjoint spanning trees, the problem of determining what edges should be added to *G* so that the resulting graph has *k* edge-disjoint spanning trees has been studied by Haas (2002) [11] and Liu et al. (2009) [17], among others. This paper aims to determine, for a matroid *M* that has *k* disjoint bases, the set $E_k(M)$ of elements in *M* such that for any $e \in E_k(M)$, M - e also has *k* disjoint bases. Using the matroid strength defined by Catlin et al. (1992) [4], we present a characterization of $E_k(G)$ in a graph *G* with at least *k* edge-disjoint spanning trees such that $\forall e \in E_k(G)$, G - e also has *k* edge-disjoint spanning trees. Polynomial algorithms are also discussed for identifying the set $E_k(M)$ in a matroid *M*, or the edge subset $E_k(G)$ for a connected graph *G*. $(\mathbb{O} \text{ 2012 Published by Elsevier B.V.}$

1. Introduction

The number of edge-disjoint spanning trees in a network, when modeled as a graph, often represents certain strength of the network [8]. The well-known spanning tree packing theorem of Nash-Williams [18] and Tutte [23] characterizes graphs with k edge-disjoint spanning trees, for any integer k > 0. For any graph G, the problem of determining which edges should be added to G so that the resulting graph has k edge-disjoint spanning trees has been studied; see [11,17], among others. However, it has not been fully studied that for an integer k > 0, if a graph G has k edge-disjoint spanning trees, what kind of edge $e \in E(G)$ has the property that G - e also has k-edge-disjoint spanning trees. The research of this paper is motivated by this problem. In fact, we will consider the problem that, if a matroid M has k disjoint bases, what kind of element $e \in E(M)$ has the property that M - e also has k disjoint bases.

We consider finite graphs with possible multiple edges and loops, and follow the notation of Bondy and Murty [1] for graphs, and Oxley [19] or Welsh [24] for matroids, except otherwise defined. Thus for a connected graph G, $\omega(G)$ denotes the number of components of G. For a matroid M, we use ρ_M (or ρ , when the matroid M is understood from the context) to denote the rank function of M, and E(M), C(M) and $\mathcal{B}(M)$ to denote the ground set of M, and the collections of the circuits and the bases of M, respectively. Furthermore, if M is a matroid with E = E(M), and if $X \subset E$, then M - X is the restricted matroid of M obtained by deleting the elements in X from M, and M/X is the matroid obtained by contracting elements in X from M. As in [19,24], we use M - e for $M - \{e\}$ and M/e for $M/\{e\}$.

^{*} Corresponding author at: College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China. *E-mail address*: hjlai@math.wvu.edu (H.-J. Lai).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter $\ensuremath{\mathbb{C}}$ 2012 Published by Elsevier B.V. doi:10.1016/j.dam.2012.07.011

The *spanning tree packing number* of a connected graph *G*, denoted by $\tau(G)$, is the maximum number of edge-disjoint spanning trees in *G*. A survey on spanning tree packing number can be found in [20]. By definition, $\tau(K_1) = \infty$. For a matroid *M*, we similarly define $\tau(M)$ to be the maximum number of disjoint bases of *M*. Note that by definition, if *M* is a matroid with $\rho(M) = 0$, then for any integer k > 0, $\tau(M) \ge k$. The following theorems are well known.

Theorem 1.1 (*Nash-Williams* [18] and Tutte [23]). Let *G* be a connected graph with $E(G) \neq \emptyset$, and let k > 0 be an integer. Then $\tau(G) \ge k$ if and only if for any $X \subseteq E(G)$, $|E(G - X)| \ge k(\omega(G - X) - 1)$.

Theorem 1.2 (Edmonds [9]). Let M be a matroid with $\rho(M) > 0$. Then $\tau(M) \ge k$ if and only if $\forall X \subseteq E(M), |E(M) - X| \ge k(\rho(M) - \rho(X))$.

Let *M* be a matroid with rank function *r*. For any subset $X \subseteq E(M)$ with $\rho(X) > 0$, the *density* of *X* is

$$d_M(X) = \frac{|X|}{\rho_M(X)}$$

When the matroid *M* is understood from the context, we often omit the subscript *M*. We also use d(M) for d(E(M)). Following the terminology in [4], the *strength* $\eta(M)$ and the *fractional arboricity* $\gamma(M)$ of *M* are respectively defined as

 $\eta(M) = \min\{d(M/X) : \rho(X) < \rho(M)\}, \text{ and } \gamma(M) = \max\{d(X) : \rho(X) > 0\}.$

Thus Theorem 1.2 above indicates that

$$\tau(M) = \lfloor \eta(M) \rfloor.$$

(1)

For an integer k > 0 and a matroid M with $\tau(M) \ge k$, we define $E_k(M) = \{e \in E(M) : \tau(M - e) \ge k\}$. Likewise, for a connected graph G with $\tau(G) \ge k$, $E_k(G) = \{e \in E(G) : \tau(G - e) \ge k\}$. Using Theorem 1.1, Gusfield proved that high edge-connectivity of a graph would imply high spanning tree packing number.

Theorem 1.3 (*Gusfield* [10]). Let k > 0 be an integer, and let $\kappa'(G)$ denote the edge-connectivity of a graph G. If $\kappa'(G) \ge 2k$, then $\tau(G) \ge k$.

The next result strengthens Gusfield's theorem, and indicates a sufficient condition for a graph G to satisfy $E_k(G) = E(G)$.

Theorem 1.4 (Theorem 1.1 of [5]). Let k > 0 be an integer, and let $\kappa'(G)$ denote the edge-connectivity of a graph *G*. Then $\kappa'(G) \ge 2k$ if and only if $\forall X \subseteq E(G)$ with $|X| \le k$, $\tau(G - X) \ge k$. In particular, if $\kappa'(G) \ge 2k$, then $E_k(G) = E(G)$.

A natural question is to characterize all graphs *G* with the property $E_k(G) = E(G)$. More generally, for any graph *G* with $\tau(G) \ge k$, we are to determine the edge subset $E_k(G)$. These questions can be presented in terms of matroids in a natural way. The main purpose of this paper is to characterize $E_k(M)$, for any matroid with $\tau(M) \ge k$. The next theorem is our main result.

Theorem 1.5. Let *M* be a matroid and k > 0 be an integer. Each of the following holds.

(i) Suppose that $\tau(M) \ge k$. Then $E_k(M) = E(M)$ if and only if $\eta(M) > k$.

(ii) In general, $E_k(M)$ equals the maximal subset $X \subseteq E(M)$ such that $\eta(M|X) > k$.

For a connected graph *G* with M(G) denoting its cycle matroid, let $\eta(G) = \eta(M(G))$ and $\gamma(G) = \gamma(M(G))$. Then Theorem 1.5, when applied to cycle matroids, yields the corresponding theorem for graphs.

Corollary 1.6. Let G be a connected graph and k > 0 be an integer. Each of the following holds.

(i) If $\tau(G) \ge k$, $E_k(G) = E(G)$ if and only if $\eta(G) > k$. (ii) In general, $E_k(G)$ equals the maximal subset $X \subseteq E(G)$ such that every component of $\eta(G[X]) > k$.

In the next section, we shall discuss properties of the strength and the fractional arboricity of a matroid M, which will be useful in the proofs of our main results. We will prove a decomposition theorem in Section 3, which will be applied in the characterizations of $E_k(M)$ and $E_k(G)$ in Section 4. In the last section, we shall develop polynomial algorithms to locate the sets $E_k(M)$ and $E_k(G)$.

2. Strength and fractional arboricity of a matroid

Both parameters $\eta(M)$ and $\gamma(M)$, and the problems related to uniformly dense graphs and matroids (defined below) have been studied by many; see [4,2,3,6,7,13–15,15,21,22], among others. From the definitions of d(M), $\eta(M)$ and $\gamma(M)$, we immediately have, for any matroid M with $\rho(M) > 0$,

$$\eta(M) \le d(M) \le \gamma(M).$$

Download English Version:

https://daneshyari.com/en/article/419815

Download Persian Version:

https://daneshyari.com/article/419815

Daneshyari.com