Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Characterization of removable elements with respect to having *k* disjoint bases in a matroid

Ping Li^{[a](#page-0-0)}, Hong-Jian Lai ^{[b,](#page-0-1)[c,](#page-0-2)}*, Yanting Liang ^{[d](#page-0-4)}

^a *Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China*

^b *College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China*

^c *Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA*

^d *Department of Mathematics, University of Wisconsin-Fond du Lac, Fond du Lac, WI 54935, USA*

ARTICLE INFO

Article history: Received 3 June 2010 Received in revised form 24 March 2012 Accepted 8 July 2012 Available online 28 July 2012

Keywords: Disjoint bases Edge-disjoint spanning trees Spanning tree packing numbers Strength Fractional arboricity Polynomial algorithm

a b s t r a c t

The well-known spanning tree packing theorem of Nash-Williams and Tutte characterizes graphs with *k* edge-disjoint spanning trees. Edmonds generalizes this theorem to matroids with *k* disjoint bases. For any graph *G* that may not have *k*-edge-disjoint spanning trees, the problem of determining what edges should be added to *G* so that the resulting graph has *k* edge-disjoint spanning trees has been studied by Haas (2002) [\[11\]](#page--1-0) and Liu et al. (2009) [\[17\]](#page--1-1), among others. This paper aims to determine, for a matroid *M* that has *k* disjoint bases, the set $E_k(M)$ of elements in *M* such that for any $e \in E_k(M)$, $M - e$ also has *k* disjoint bases. Using the matroid strength defined by Catlin et al. (1992) [\[4\]](#page--1-2), we present a characterization of *Ek*(*M*) in terms of the strength of *M*. Consequently, this yields a characterization of edge sets $E_k(G)$ in a graph *G* with at least *k* edge-disjoint spanning trees such that $\forall e \in E_k(G)$, *G* − *e* also has *k* edge-disjoint spanning trees. Polynomial algorithms are also discussed for identifying the set $E_k(M)$ in a matroid M, or the edge subset $E_k(G)$ for a connected graph *G*. © 2012 Published by Elsevier B.V.

1. Introduction

The number of edge-disjoint spanning trees in a network, when modeled as a graph, often represents certain strength of the network [\[8\]](#page--1-3). The well-known spanning tree packing theorem of Nash-Williams [\[18\]](#page--1-4) and Tutte [\[23\]](#page--1-5) characterizes graphs with *k* edge-disjoint spanning trees, for any integer *k* > 0. For any graph *G*, the problem of determining which edges should be added to *G* so that the resulting graph has *k* edge-disjoint spanning trees has been studied; see [\[11,](#page--1-0)[17\]](#page--1-1), among others. However, it has not been fully studied that for an integer *k* > 0, if a graph *G* has *k* edge-disjoint spanning trees, what kind of edge *e* ∈ *E*(*G*) has the property that *G*−*e* also has *k*-edge-disjoint spanning trees. The research of this paper is motivated by this problem. In fact, we will consider the problem that, if a matroid *M* has *k* disjoint bases, what kind of element $e \in E(M)$ has the property that $M - e$ also has *k* disjoint bases.

We consider finite graphs with possible multiple edges and loops, and follow the notation of Bondy and Murty [\[1\]](#page--1-6) for graphs, and Oxley [\[19\]](#page--1-7) or Welsh [\[24\]](#page--1-8) for matroids, except otherwise defined. Thus for a connected graph *G*, ω(*G*) denotes the number of components of *G*. For a matroid *M*, we use ρ_M (or ρ , when the matroid *M* is understood from the context) to denote the rank function of *M*, and $E(M)$, $C(M)$ and $B(M)$ to denote the ground set of *M*, and the collections of the circuits and the bases of *M*, respectively. Furthermore, if *M* is a matroid with *E* = *E*(*M*), and if *X* ⊂ *E*, then *M* − *X* is the restricted matroid of *M* obtained by deleting the elements in *X* from *M*, and *M*/*X* is the matroid obtained by contracting elements in *X* from *M*. As in [\[19](#page--1-7)[,24\]](#page--1-8), we use $M - e$ for $M - \{e\}$ and M/e for $M/\{e\}$.

[∗] Corresponding author at: College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China. *E-mail address:* hjlai@math.wvu.edu (H.-J. Lai).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2012 Published by Elsevier B.V. [doi:10.1016/j.dam.2012.07.011](http://dx.doi.org/10.1016/j.dam.2012.07.011)

The *spanning tree packing number* of a connected graph *G*, denoted by $\tau(G)$, is the maximum number of edge-disjoint spanning trees in *G*. A survey on spanning tree packing number can be found in [\[20\]](#page--1-9). By definition, $\tau(K_1) = \infty$. For a matroid *M*, we similarly define τ (*M*) to be the maximum number of disjoint bases of *M*. Note that by definition, if *M* is a matroid with $\rho(M) = 0$, then for any integer $k > 0$, $\tau(M) \geq k$. The following theorems are well known.

Theorem 1.1 (*Nash-Williams [\[18\]](#page--1-4)* and Tutte [\[23\]](#page--1-5)). Let G be a connected graph with $E(G) \neq \emptyset$, and let $k > 0$ be an integer. Then $\tau(G) \geq k$ *if and only if for any* $X \subseteq E(G), |E(G - X)| \geq k(\omega(G - X) - 1)$ *.*

Theorem 1.2 (*Edmonds [\[9\]](#page--1-10)*). *Let M be a matroid with* $\rho(M) > 0$. Then $\tau(M) \geq k$ if and only if $\forall X \subseteq E(M)$, $|E(M) - X| \geq$ $k(\rho(M) - \rho(X)).$

Let *M* be a matroid with rank function *r*. For any subset $X \subseteq E(M)$ with $\rho(X) > 0$, the *density* of *X* is

$$
d_M(X) = \frac{|X|}{\rho_M(X)}.
$$

When the matroid *M* is understood from the context, we often omit the subscript *M*. We also use $d(M)$ for $d(E(M))$. Following the terminology in [\[4\]](#page--1-2), the *strength* $n(M)$ and the *fractional arboricity* $\gamma(M)$ of M are respectively defined as

 $\eta(M) = \min\{d(M/X) : \rho(X) < \rho(M)\},\$ and $\gamma(M) = \max\{d(X) : \rho(X) > 0\}.$

Thus [Theorem 1.2](#page-1-0) above indicates that

$$
\tau(M) = \lfloor \eta(M) \rfloor. \tag{1}
$$

For an integer $k > 0$ and a matroid M with $\tau(M) > k$, we define $E_k(M) = \{e \in E(M) : \tau(M - e) > k\}$. Likewise, for a connected graph *G* with $\tau(G) > k$, $E_k(G) = \{e \in E(G) : \tau(G - e) > k\}$. Using [Theorem 1.1,](#page-1-1) Gusfield proved that high edge-connectivity of a graph would imply high spanning tree packing number.

Theorem 1.3 (Gusfield [\[10\]](#page--1-11)). Let $k > 0$ be an integer, and let $\kappa'(G)$ denote the edge-connectivity of a graph G. If $\kappa'(G) \geq 2k$, *then* $\tau(G) > k$.

The next result strengthens Gusfield's theorem, and indicates a sufficient condition for a graph *G* to satisfy $E_k(G) = E(G)$.

Theorem 1.4 (*Theorem 1.1 of [\[5\]](#page--1-12)*)**.** *Let k* > 0 *be an integer, and let* κ ′ (*G*) *denote the edge-connectivity of a graph G. Then* $\kappa'(G)\geq 2k$ if and only if $\forall X\subseteq E(G)$ with $|X|\leq k$, $\tau(G-X)\geq k$. In particular, if $\kappa'(G)\geq 2k$, then $E_k(G)=E(G)$.

A natural question is to characterize all graphs *G* with the property $E_k(G) = E(G)$. More generally, for any graph *G* with $\tau(G) \geq k$, we are to determine the edge subset $E_k(G)$. These questions can be presented in terms of matroids in a natural way. The main purpose of this paper is to characterize $E_k(M)$, for any matroid with $\tau(M) \geq k$. The next theorem is our main result.

Theorem 1.5. *Let M be a matroid and k* > 0 *be an integer. Each of the following holds.*

(i) *Suppose that* $\tau(M) > k$. Then $E_k(M) = E(M)$ *if and only if* $\eta(M) > k$.

(ii) *In general,* $E_k(M)$ *equals the maximal subset* $X \subseteq E(M)$ *such that* $n(M|X) > k$.

For a connected graph *G* with *M*(*G*) denoting its cycle matroid, let $\eta(G) = \eta(M(G))$ and $\gamma(G) = \gamma(M(G))$. Then [Theorem 1.5,](#page-1-2) when applied to cycle matroids, yields the corresponding theorem for graphs.

Corollary 1.6. *Let G be a connected graph and k* > 0 *be an integer. Each of the following holds.*

(i) *If* $\tau(G) > k$, $E_k(G) = E(G)$ *if and only if* $n(G) > k$. (ii) In general, $E_k(G)$ equals the maximal subset $X \subseteq E(G)$ such that every component of $\eta(G[X]) > k$.

In the next section, we shall discuss properties of the strength and the fractional arboricity of a matroid *M*, which will be useful in the proofs of our main results. We will prove a decomposition theorem in Section [3,](#page--1-13) which will be applied in the characterizations of *Ek*(*M*) and *Ek*(*G*) in Section [4.](#page--1-14) In the last section, we shall develop polynomial algorithms to locate the sets $E_k(M)$ and $E_k(G)$.

2. Strength and fractional arboricity of a matroid

Both parameters $\eta(M)$ and $\gamma(M)$, and the problems related to uniformly dense graphs and matroids (defined below) have been studied by many; see [\[4,](#page--1-2)[2](#page--1-15)[,3,](#page--1-16)[6,](#page--1-17)[7](#page--1-18)[,13–15](#page--1-19)[,15,](#page--1-20)[21](#page--1-21)[,22\]](#page--1-22), among others. From the definitions of $d(M)$, $\eta(M)$ and $\gamma(M)$, we immediately have, for any matroid *M* with $\rho(M) > 0$,

$$
\eta(M) \le d(M) \le \gamma(M). \tag{2}
$$

Download English Version:

<https://daneshyari.com/en/article/419815>

Download Persian Version:

<https://daneshyari.com/article/419815>

[Daneshyari.com](https://daneshyari.com)