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a b s t r a c t

We consider four families of pancake graphs, which are Cayley graphs, whose vertex sets
are either the symmetric group on n objects or the hyperoctahedral group on n objects and
whose generating sets are either all reversals or all reversals inverting the first k elements
(called prefix reversals). We find that the girth of each family of pancake graphs remains
constant after some small threshold value of n.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A signed permutation on n objects is a function

α: {1, 2, . . . , n} → {−n, . . . ,−1} ∪ {1, . . . , n}

such that |α| is in Sn. We represent a signed permutation α as an n-tuple

α = (α(1), α(2), . . . , α(n))

andwe can think about α as a permutation on n objects in which each object is provided a sign. For two signed permutations
on n objects, say α and β , we define the composition of β with α by

(βα)(i) := α(|β(i)|) · sgnβ(i).

For example, (−4, 1, −3, −2)(1, 3, −4, −2) = (2, 1, 4, −3). Under this operation, the set of all signed permutations on n
objects forms the hyperoctahedral group on n objects, which we denote by Bn. This group is commonly known as the group
of symmetries of the n-dimensional hypercube.

In this light, we shall call the members of Sn unsigned permutations on n objects. As with composition of signed
permutations, our composition in Sn will be written left-to-right:

(βα)(i) := α(β(i)).

Henceforth, ‘‘permutation’’ will refer generally to both signed and unsigned permutations. The identity of both Sn and Bn
is denoted by In.

For fixed n and 1 ≤ j < k ≤ n, the unsigned reversal on the interval [j, k] is the permutation υ[j,k] ∈ Sn defined by

υ[j,k] := (1, 2, . . . , j − 1, k, k − 1, . . . , j, k + 1, k + 2, . . . , n).
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In the case that j = 1 (and thus 2 ≤ k ≤ n), we write υ[k] := υ[1,k] and say that υ[k] is the unsigned prefix reversal at index k.
Let Υn (Υ p

n ) denote the set of all unsigned reversals (unsigned prefix reversals) in Sn.
Analogously, for 1 ≤ j ≤ k ≤ n, the signed reversal on the interval [j, k] is the permutation σ[j,k] ∈ Bn defined by

σ[j,k] := (1, 2, . . . , j − 1, −k, −(k − 1), . . . ,−j, k + 1, k + 2, . . . , n).

Note that in the signed case we allow k = j, since for all 1 ≤ j ≤ n, σ[j,j] ≠ In. Furthermore, for 1 ≤ k ≤ n, the signed prefix
reversal at index k is the permutation σ[k] := σ[1,k]. LetΣn (Σ

p
n ) denote the set of all signed reversals (signed prefix reversals)

in Bn. Henceforth, ‘‘reversal’’ may refer to any signed or unsigned reversal, prefix or otherwise, and we use ρ to denote an
arbitrary reversal.

Next, define the unsigned reversal graph (unsigned prefix reversal graph) on n objects, denoted by URn (UPn), as the Cayley
graph whose vertex set is Sn and whose generating set is Υn (Υ p

n ). Both graphs have order |Sn| = n!; UPn has degree n − 1,
while URn has degree

 n
2


.

Analogously, define the signed reversal graph (signed prefix reversal graph) on n objects, denoted by SRn (SPn), as the Cayley
graph with vertex set Bn and generating set Σn (Σp

n ). Both graphs have order |Bn| = 2n
· n!; SPn has degree n, while SRn has

degree


n+1
2


.

We refer to all four families of Cayley graphs collectively as pancake graphs. Before continuing, we will give two
straightforward facts about pancake graphs. We will see later that the second fact will provide an upper bound on the
girth of each family of pancake graphs once we have found a short cycle in that family.

Fact 1. For any n, Υ p
n ⊂ Υn and Σ

p
n ⊂ Σn, so that UPn is a subgraph of URn and SPn is a subgraph of SRn.

Fact 2. Every pancake graph embeds in all higher-order pancake graphs of the same family. For example, if m ≤ n, then UPm is
isomorphic to the Cayley subgraph of UPn generated by the subset of Υ

p
n containing only those unsigned prefix reversals υk for

which k ≤ m.

The etymology of ‘‘pancake graph’’ traces back to a 1975 American Mathematical Monthly problem, which asked for a
function f (n) bounding the maximum number of flips required to transform a given stack of n differently sized pancakes
into the stack whose pancakes are sorted from top to bottom in the order of increasing size. Of course, stacks of pancakes
correspond to unsigned permutations; if all the pancakes are burned on one side (creating the ‘‘burned pancake problem’’),
stacks correspond to signed permutations. A pancake graph is therefore a graph whose vertices are stacks of n pancakes,
and whose edges represent flips between stacks: prefix reversals constitute a ‘‘one-spatula’’ case and reversals constitute
a ‘‘two-spatula’’ case. For three decades, the best known bound for the pancake problem was found in [6], although it has
recently been improved in [3]. See [1,2,4,5,7,9] and [10] for more on the pancake problem and its offshoots.

A biological application of pancake flipping is found in genetic analysis. One common form of large-scale evolutionary
change is a genomic mutation which manifests itself in the reversal of some segment of the mutated organism’s DNA.
Phylogeneticists study how the accumulation of millions of years of mutations, including reversals of DNA segments, have
led to species divergence. Therefore, a given property of pancake graphs can inmany cases be translated into a phylogenetic
application when only reversal mutations are considered. For example, it seems extremely unlikely that evolutionary
changes occur in cycles; however, if pancake graphs were to be shown to have large girth (say O(n)), then we would have
concrete evidence that cyclical evolutionary patterns are implausible.

2. Preliminaries

In this note, our aim is to find the girth of each of the four families of pancake graphs introduced above. For k ≥ 3, we
define a cycle of length k in a pancake graph as a reduced finite sequence of reversals (ρ1, ρ2, . . . , ρk), all of which lie in the
appropriate generating set, and such that ρk · · · ρ1 = In. By a ‘‘reduced sequence’’, we mean a sequence for which ρ1 ≠ ρk
and ρi+1 ≠ ρi for all 1 ≤ i ≤ k − 1, since all reversals are involutions within their respective permutation groups. Observe
that this definition of cycle agrees with the graph theoretical one; therefore, the girth of a pancake graphwill be theminimal
length of a cycle of reversals taken from that graph’s generating set.

Let α ∈ Sn and extend α to a member of Sn+2 by setting α(0) = 0 and α(n + 1) = n + 1. For 0 ≤ i ≤ n, we continue
the terminology established in [9] and say that α has a breakpoint at i if |α(i + 1) − α(i)| ≠ 1. In the signed case, we also
extend β ∈ Bn to an element of Bn+2 by setting β(0) = 0 and β(n + 1) = n + 1. In this case, however, we say that β has a
breakpoint at i if β(i+ 1) − β(i) ≠ 1. For example, the signed permutation β = (−4, −3, −2, 1, 5) has breakpoints at 0, 3,
and 4.

We also define a non-initial breakpoint of a permutation to be any breakpoint other than the breakpoint at 0. Observe
that in both the signed and unsigned cases, the identity In is the only permutation with no breakpoints. In pancake flipping,
it is therefore interesting to think of breakpoints as something we wish to eliminate during a walk to the identity.

A set B ⊂ Bn will be called k-compressible if for some J ⊂ {0, 1, 2, . . . , n} with |J| = k, B contains only signed
permutations β such that for every j ∈ J , either β−1(j + 1) − β−1(j) = 1 or β−1(−j) − β−1(−(j + 1)) = 1. (In other
words, if j occurs in β , then j+1 occurs immediately to the right of j in β , and otherwise −(j+1) occurs immediately to the
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