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odd-hole algorithm for claw-free graphs by exploiting the structural relationship between
line graphs and quasi-line graphs suggested by Chudnovsky and Seymour’s structure the-
orem for quasi-line graphs. Our approach involves reducing the problem to that of find-
ing a shortest odd cycle of length > 5 in a graph. Our algorithm runs in O(m? + n? log n)

K : . . . . . .
O?:jw}?g;f time, improving upon Shrem, Stern, and Golumbic’s recent O(nm?) algorithm, which uses
Claw-free graph a local approach. The best known recognition algorithms for claw-free graphs run in

o(m'%%) N 0(n3?) time, or 0(m?) N 0(n>°) without fast matrix multiplication.
© 2013 Elsevier B.V. All rights reserved.

1. Background and motivation

A hole in a graph is an induced cycle C; of length k > 4. Odd holes are fundamental to the study of perfect graphs [5];
although there are polynomial-time algorithms that decide whether or not either a graph or its complement contains an
odd hole [9,2], no general algorithm for detecting an odd hole in a graph is known.

0dd holes are also fundamental to the study of claw-free graphs, i.e. graphs containing no induced copy of K; 5. Every
neighbourhood v in a claw-free graph has stability number «(G[N(v)]) < 2. So if G[N(v)] is perfect then v is bisimplicial
(i.e. its neighbours can be partitioned into two cliques, i.e. G[N(v)] is cobipartite), and if G[N (v)] is imperfect then G[N (v)]
contains the complement of an odd hole. Fouquet proved something stronger.

Lemma 1 (Fouquet [11]). Let G be a connected claw-free graph with «(G) > 3. Then every vertex of G is bisimplicial or contains
an induced Cs in its neighbourhood.

It follows that a claw-free graph G has «(G) < 2, or contains an induced Cs in the neighbourhood of some vertex, or is
quasi-line, meaning every vertex is bisimplicial.

Chvatal and Sbihi proved a decomposition theorem for perfect claw-free graphs that yields a polynomial-time recognition
algorithm [8]. More recently, Shrem, Stern, and Golumbic gave an O(nm?) algorithm for finding a shortest odd hole in a claw-
free graph based on a variant of breadth-first search in an auxiliary graph [18]. We solve the same problem, but instead of
using local structure we use global structure and take advantage of the similarities between claw-free graphs, quasi-line
graphs, and line graphs. We prove the following theorem.

Theorem 2. There exists an algorithm that, given a claw-free graph G on n vertices and m edges, finds a smallest odd hole in G or
determines that none exists in O(m? + n® log n) time.
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Fouquet’s lemma allows us to focus on quasi-line graphs. Their global structure, described by Chudnovsky and Seymour
[6], resembles that of line graphs closely enough that we can reduce the shortest odd hole problem on quasi-line graphs
to a set of shortest path problems in underlying multigraphs. Our algorithm is not much slower than the fastest known
recognition algorithms for claw-free graphs: Alon and Boppana gave an O(n3?) recognition algorithm [1]. Kloks, Kratsch,
and Miiller gave an O(m'®°) recognition algorithm that relies on impractical fast matrix multiplication [15]. Their approach
takes O(m?) time using naive matrix multiplication, and more generally O(m#+1/2) time using O(n?) matrix multiplication.

2. The easy cases: finding a C5

We begin by taking advantage of Fouquet’s lemma in order to reduce the problem to quasi-line graphs. We denote the
closed neighbourhood of a vertex v by N (v).

Theorem 3. Let G be graph with «(G) < 2. In O(m?) time we can find an induced Cs in G or determine that none exists.

Proof. For each edge uv we do the following. First, we construct sets X = N(u) \ N(v), Y =N\ N(u), andZ = V(G) \
(N(u) UN(v)). If u and v are in an induced Cs together then all three must be nonempty. Since «(G) < 2, we know that
both X and Y are complete to Z. Second, we search for x € X and y € Y which are nonadjacent - if such x and y exist then
this clearly gives us Cs. It is easy to see that we can construct the sets in O(n) time, and that we can search for a non-edge
between X and Y in O(im) time, since we can terminate once we find one. Thus it takes O(m?) time to do this for every edge,
and if an induced Cs exists in G we will identify it as uvyzx foranyz € Z. O

Kloks, Kratsch, and Miiller observed that as a consequence of Turdn’s theorem, every vertex in a claw-free graph has at
most 2,/m neighbours [15]. We make repeated use of this fact, starting with a consequence of the previous lemma.

Corollary 4. Let G be a claw-free graph with «(G) > 3. Then in O(m?) time we can find an induced W5 in G or determine that G
is quasi-line.

Proof. By Fouquet’s lemma, any vertex of G is either bisimplicial or contains an induced Cs in its neighbourhood. For any
v € V(G), we can easily check whether or not G[N(v)] is cobipartite in O(d(v)?) time. Since G is claw-free, d(v)?> = 0(m).
Thus in O(nm) time we can determine that G is quasi-line or find a vertex v which is not bisimplicial.

Given this v, we can find an induced Cs in G[N(v)] in O(m?) time by applying the method in the previous proof, since
a(GINW)]) <2. O

Having dealt with these cases made easy by Fouquet’s lemma, we can move on to quasi-line graphs with « > 3, the
structure of which we describe now.

3. The structure of quasi-line graphs

Given a multigraph H (with loops permitted), its line graph L(H) is the graph with one vertex for each edge of H, in which
two vertices are adjacent precisely if their corresponding edges in H share at least one endpoint. Thus the neighbours of any
vertex v in L(H) are covered by two cliques, one for each endpoint of the edge in H corresponding to v. We say that G is a
line graph if G = L(H) for some multigraph H.

Chudnovsky and Seymour [6] described exactly how quasi-line graphs generalize line graphs: a quasi-line graph is
essentially either a circular interval graph or can be obtained from a multigraph by replacing each edge with a linear interval
graph.

3.1. Linear and circular interval graphs

A linear interval graph is a graph G = (V, E) with a linear interval representation, which is a point on the real line for each
vertex and a set of intervals, such that vertices u and v are adjacent in G precisely if there is an interval containing both
corresponding points on the real line. If X and Y are specified cliques in G consisting of the |X| leftmost and |Y| rightmost
vertices (with respect to the real line) of G respectively, we say that X and Y are end-cliques of G. Given a linear interval
representation, if u is to the left of v we say that u < v. If u and v are adjacent, we say that u is a left neighbour of v, and v is
a right neighbour of u.

Accordingly, a circular interval graph is a graph with a circular interval representation, i.e. |V| points on the unit circle
and a set of intervals (arcs) on the unit circle such that two vertices of G are adjacent precisely if some arcs contain both
corresponding points. For distinct u and v in V, if there is an arc containing u, v, and all points on the circle reached by moving
clockwise (resp. counterclockwise) from u until reaching v, we say that v is a clockwise neighbour (resp. counterclockwise
neighbour) of u. Circular interval graphs are the first of two fundamental types of quasi-line graph. Deng, Hell, and Huang
proved that we can identify and find a representation of a circular or linear interval graph in O(m) time [10].
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