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a b s t r a c t

A lemma of Fouquet implies that a claw-free graph contains an induced C5, contains no
odd hole, or is quasi-line. In this paper, we use this result to give an improved shortest-
odd-hole algorithm for claw-free graphs by exploiting the structural relationship between
line graphs and quasi-line graphs suggested by Chudnovsky and Seymour’s structure the-
orem for quasi-line graphs. Our approach involves reducing the problem to that of find-
ing a shortest odd cycle of length ≥ 5 in a graph. Our algorithm runs in O(m2

+ n2 log n)
time, improving upon Shrem, Stern, and Golumbic’s recent O(nm2) algorithm, which uses
a local approach. The best known recognition algorithms for claw-free graphs run in
O(m1.69) ∩ O(n3.5) time, or O(m2) ∩ O(n3.5) without fast matrix multiplication.

© 2013 Elsevier B.V. All rights reserved.

1. Background and motivation

A hole in a graph is an induced cycle Ck of length k ≥ 4. Odd holes are fundamental to the study of perfect graphs [5];
although there are polynomial-time algorithms that decide whether or not either a graph or its complement contains an
odd hole [9,2], no general algorithm for detecting an odd hole in a graph is known.

Odd holes are also fundamental to the study of claw-free graphs, i.e. graphs containing no induced copy of K1,3. Every
neighbourhood v in a claw-free graph has stability number α(G[N(v)]) ≤ 2. So if G[N(v)] is perfect then v is bisimplicial
(i.e. its neighbours can be partitioned into two cliques, i.e. G[N(v)] is cobipartite), and if G[N(v)] is imperfect then G[N(v)]
contains the complement of an odd hole. Fouquet proved something stronger.

Lemma 1 (Fouquet [11]). Let G be a connected claw-free graph with α(G) ≥ 3. Then every vertex of G is bisimplicial or contains
an induced C5 in its neighbourhood.

It follows that a claw-free graph G has α(G) ≤ 2, or contains an induced C5 in the neighbourhood of some vertex, or is
quasi-line, meaning every vertex is bisimplicial.

Chvátal and Sbihi proved a decomposition theorem for perfect claw-free graphs that yields a polynomial-time recognition
algorithm [8].More recently, Shrem, Stern, and Golumbic gave anO(nm2) algorithm for finding a shortest odd hole in a claw-
free graph based on a variant of breadth-first search in an auxiliary graph [18]. We solve the same problem, but instead of
using local structure we use global structure and take advantage of the similarities between claw-free graphs, quasi-line
graphs, and line graphs. We prove the following theorem.

Theorem 2. There exists an algorithm that, given a claw-free graph G on n vertices and m edges, finds a smallest odd hole in G or
determines that none exists in O(m2

+ n2 log n) time.
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Fouquet’s lemma allows us to focus on quasi-line graphs. Their global structure, described by Chudnovsky and Seymour
[6], resembles that of line graphs closely enough that we can reduce the shortest odd hole problem on quasi-line graphs
to a set of shortest path problems in underlying multigraphs. Our algorithm is not much slower than the fastest known
recognition algorithms for claw-free graphs: Alon and Boppana gave an O(n3.5) recognition algorithm [1]. Kloks, Kratsch,
and Müller gave an O(m1.69) recognition algorithm that relies on impractical fast matrix multiplication [15]. Their approach
takesO(m2) time using naïvematrixmultiplication, andmore generallyO(m(β+1)/2) time usingO(nβ)matrixmultiplication.

2. The easy cases: finding a C5

We begin by taking advantage of Fouquet’s lemma in order to reduce the problem to quasi-line graphs. We denote the
closed neighbourhood of a vertex v by Ñ(v).

Theorem 3. Let G be graph with α(G) ≤ 2. In O(m2) time we can find an induced C5 in G or determine that none exists.

Proof. For each edge uv we do the following. First, we construct sets X = N(u) \ Ñ(v), Y = N(v) \ Ñ(u), and Z = V (G) \

(N(u) ∪ N(v)). If u and v are in an induced C5 together then all three must be nonempty. Since α(G) ≤ 2, we know that
both X and Y are complete to Z . Second, we search for x ∈ X and y ∈ Y which are nonadjacent – if such x and y exist then
this clearly gives us C5. It is easy to see that we can construct the sets in O(n) time, and that we can search for a non-edge
between X and Y in O(m) time, since we can terminate once we find one. Thus it takes O(m2) time to do this for every edge,
and if an induced C5 exists in Gwe will identify it as uvyzx for any z ∈ Z . �

Kloks, Kratsch, and Müller observed that as a consequence of Turán’s theorem, every vertex in a claw-free graph has at
most 2

√
m neighbours [15]. We make repeated use of this fact, starting with a consequence of the previous lemma.

Corollary 4. Let G be a claw-free graph with α(G) ≥ 3. Then in O(m2) time we can find an induced W5 in G or determine that G
is quasi-line.

Proof. By Fouquet’s lemma, any vertex of G is either bisimplicial or contains an induced C5 in its neighbourhood. For any
v ∈ V (G), we can easily check whether or not G[N(v)] is cobipartite in O(d(v)2) time. Since G is claw-free, d(v)2 = O(m).
Thus in O(nm) time we can determine that G is quasi-line or find a vertex v which is not bisimplicial.

Given this v, we can find an induced C5 in G[N(v)] in O(m2) time by applying the method in the previous proof, since
α(G[N(v)]) ≤ 2. �

Having dealt with these cases made easy by Fouquet’s lemma, we can move on to quasi-line graphs with α ≥ 3, the
structure of which we describe now.

3. The structure of quasi-line graphs

Given amultigraph H (with loops permitted), its line graph L(H) is the graph with one vertex for each edge of H , in which
two vertices are adjacent precisely if their corresponding edges in H share at least one endpoint. Thus the neighbours of any
vertex v in L(H) are covered by two cliques, one for each endpoint of the edge in H corresponding to v. We say that G is a
line graph if G = L(H) for some multigraph H .

Chudnovsky and Seymour [6] described exactly how quasi-line graphs generalize line graphs: a quasi-line graph is
essentially either a circular interval graph or can be obtained from amultigraph by replacing each edgewith a linear interval
graph.

3.1. Linear and circular interval graphs

A linear interval graph is a graph G = (V , E) with a linear interval representation, which is a point on the real line for each
vertex and a set of intervals, such that vertices u and v are adjacent in G precisely if there is an interval containing both
corresponding points on the real line. If X and Y are specified cliques in G consisting of the |X | leftmost and |Y | rightmost
vertices (with respect to the real line) of G respectively, we say that X and Y are end-cliques of G. Given a linear interval
representation, if u is to the left of v we say that u < v. If u and v are adjacent, we say that u is a left neighbour of v, and v is
a right neighbour of u.

Accordingly, a circular interval graph is a graph with a circular interval representation, i.e. |V | points on the unit circle
and a set of intervals (arcs) on the unit circle such that two vertices of G are adjacent precisely if some arcs contain both
corresponding points. For distinct u and v in V , if there is an arc containing u, v, and all points on the circle reached bymoving
clockwise (resp. counterclockwise) from u until reaching v, we say that v is a clockwise neighbour (resp. counterclockwise
neighbour) of u. Circular interval graphs are the first of two fundamental types of quasi-line graph. Deng, Hell, and Huang
proved that we can identify and find a representation of a circular or linear interval graph in O(m) time [10].
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