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a b s t r a c t

A graph G is said to be k-degenerate if any subgraph of G contains a vertex of degree at
most k. The degeneracy of graphs has many applications and was widely studied in graph
theory. We first generalize k-degeneracy by introducing κ-degeneracy of graphs, where
κ is any non-negative function on the vertex set of the graph. We present a polynomial
time algorithm to determine whether a graph is κ-degenerate. Let τ : V (G) → Z be an
assignment of thresholds to the vertices ofG. A subset of verticesD is said to be a τ -dynamic
monopoly of G, if the vertices of G can be partitioned into subsets D0,D1, . . . ,Dk such that
D0 = D and for any i ∈ {0, . . . , k − 1}, each vertex v in Di+1 has at least τ(v) neighbors in
D0 ∪ · · · ∪ Di. The concept of dynamic monopolies is used for the formulation and analysis
of spread of influence such as disease or opinion in social networks and is the subject of
active research in recent years. We obtain a relationship between degeneracy and dynamic
monopoly of graphs and show that these two concepts are dual of each other. Using this
relationship, we introduce and study dynt(G), which is the smallest cardinality of any τ -
dynamic monopoly among all threshold assignments τ with average threshold τ̄ = t . We
give an explicit formula for dynt(G), and obtain some lower and upper bounds for it. We
show that dynt(G) is NP-complete but for complete multipartite graphs and some other
classes of graphs it can be solved by polynomial time algorithms. For the regular graphs,
dynt(G) can be approximated within a ratio of nearly 2. Finally we consider the problem
of determining the maximum size of κ-degenerate (or k-degenerate) induced subgraphs
in any graph and obtain some upper and lower bounds for the maximum size of such
subgraphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite, undirected and simple. For standard graph theoretical notions and notations we refer
the reader to [6]. Let k be any non-negative integer. A graph G is said to be a k-degenerate graph if any subgraph of G contains
a vertex of degree at most k. It is a well-known fact that G is k-degenerate if and only if the vertices of G can be ordered as
v1, v2, . . . , vn such that the degree of vi in the subgraph of G induced by {v1, . . . , vi} is at most k for any i ∈ {1, . . . , n}. The
concept of degeneracy has many applications in graph theory, for example in algorithmic, extremal and chromatic graph
theory and has caused many interesting results and problems in these areas (see e.g. [14]).

We generalize the concept of k-degeneracy as follows. Let κ be any assignment of non-negative integers to the vertices
of G. We say a graph G is κ-degenerate if the vertices of G can be ordered as v1, v2, . . . , vn such that the degree of vi in the
subgraph of G induced by {v1, . . . , vi} is at most κ(vi) for any i ∈ {1, . . . , n}. Note that when κ is a constant function then
κ-degeneracy is equivalent to k-degeneracy. Throughout this paper by N we mean the set of non-negative integers.
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Theother concept to bediscussed in this paper is irreversible dynamicmonopoly (or simply dynamicmonopoly). In recent
years, great attention has been paid to the modeling and analysis of the spread of belief or influence in social networks. The
concept of dynamicmonopolies was introduced in order to formulate these problems. By a threshold assignment for a graph
G we mean any function τ : V (G) → Z such that τ(v) ≤ deg(v) for any vertex v, where V (G) is the vertex set of G and
deg(v) is the degree of v in G. A subset D ⊆ V (G) is called a dynamic monopoly (or a τ -dynamic monopoly) if there exists
a partition of V (G) into subsets D0,D1, . . . ,Dk such that D0 = D and for any i = 1, . . . , k − 1 each vertex v in Di+1 has at
least τ(v) neighbors in D0 ∪ · · · ∪ Di. When a vertex v belongs to Di for some i, we say v is activated at time step i. Denote
the smallest cardinality of any τ -dynamic monopoly of G by dynτ (G). Note that we have extended the notion of dynamic
monopolies by allowing the vertices of the graph to have non-positive thresholds. In the standard definition of dynamic
monopolies all thresholds are non-negative integers. When a vertex v has threshold τ(v) ≤ 0 then v is automatically an
active vertex and it belongs to the monopoly; but in the definition of the size of a dynamic monopoly such vertices are
not counted. In precise words, by the size of a dynamic monopoly D = D0,D1, . . . ,Dk we mean |D \ {v : τ(v) ≤ 0}|. A
τ -dynamic monopoly is also called k-conversion set whenever τ is the constant function k [9]. Also dynamic monopolies
were studied under the terminology of target set selection (e.g. [1]). Dynamic monopolies (including target set selection
problem and k-conversion sets) have been widely studied with various types of threshold assignments [1–3,7–10,15,18].
Random subsets of a graph as dynamic monopolies were studied in [16]. This setup with constant thresholds is also studied
under the name of bootstrap percolation (see e.g. [5]). For more related works on dynamic monopolies we refer the reader
to [18],where dynamicmonopolieswith general andprobabilistic threshold assignmentswere considered. Aswementioned
before, we have extended the notion of dynamic monopolies by allowing the vertices of the graph to have non-positive
thresholds in order to obtain more applications of dynamic monopolies. One of these applications is the relationship of
dynamic monopolies with κ-degeneracy to be explored in this paper and in finding k-degenerate induced subgraphs with
maximum cardinality. Some results of this paper were already reported in arXiv by the author [19].

The outline of the paper is as follows. In the next section an O(n2) algorithm is given for deciding whether a graph is
κ-degenerate (Theorem 1). Then it is proved that subject to some conditions, a subsetM of the vertices of G is a τ -dynamic
monopoly if and only if its complement is κ-degenerate (Theorem 3). In Section 2 we define and study dynτ̄=t(G). We
show that dynτ̄=t(G) is expressed in terms of the maximum order of any induced subgraph with no more than a certain
number of edges (Theorem 4). First, we show that dynτ̄=t(G) is NP-complete (Theorem 6). But we show that dynτ̄=t(G) can
be obtained by a polynomial time algorithm for complete multipartite graphs G (Theorem 7) and also for some families of
graphs with special values of t (Theorem 9). Then we obtain a lower bound (Corollary 1) and an upper bound (Theorem 10)
for dynτ̄=t(G) in general graphs and for regular graphs (Corollary 2). Theorem 11 shows that dynτ̄=t(G) can be approximated
within a ratio of nearly 2 in case of regular graphs. In the last section we consider the maximum order of any κ-degenerate
induced subgraph in a graph and review some related results.

2. κ-degeneracy and dynamic monopolies

Let κ be any assignment of non-negative integers to the vertices of G. The graph G is κ-degenerate if the vertices of G can
be ordered as v1, v2, . . . , vn such that the degree of vi in the subgraph of G induced by {v1, . . . , vi} is at most κ(vi) for any
i ∈ {1, . . . , n}. Since some of our results are in terms of κ-degeneracy, it is necessary to present a method to check whether
a graph is κ-degenerate. We first need the following proposition. Note that if G is κ-degenerate then |E(G)| ≤


v∈G κ(v).

Proposition 1. (i) Assume that G is κ-degenerate. Then there exists a vertex v in G such that 0 ≤ κ(v) − deg(v) ≤


v∈V (G)

κ(v) − |E(G)|.
(ii) Let κ : V (G) → N be given. Let the vertex v of G be such that 0 ≤ κ(v) − deg(v) ≤


v∈V (G) κ(v) − |E(G)|. Then G is

κ-degenerate if and only if G \ {v} is κ ′-degenerate, where κ ′ is obtained by restricting κ to V (G) \ {v}.

Proof. To prove (i), since G is κ-degenerate then there exist v1, . . . , vn such that degG[v1,...,vi]
(vi) ≤ κ(vi), for any i. We have

|E(G)| =


i degG[v1,...,vi]
(vi) ≤


v∈V (G) κ(v). Obviously G′

= G \ {vn} is κ ′-degenerate. So we write the same inequality for
the edges of G′. We obtain |E(G)| − degG(vn) ≤


i∈{1,...,n−1} κ(vi). Hence vn satisfies the condition of part (i).

To prove (ii)we note that ifG\{v} is κ-degenerate by the ordering v1, v2, . . . , vn−1, thenG is κ-degenerate by the ordering
v1, . . . , vn−1, v. The converse is trivial since if a graph is κ-degenerate then any subgraph of it is also κ-degenerate. �

Based on Proposition 1 we obtain an algorithm which decides if a graph G is κ-degenerate.

Theorem 1. There exists an O(n2) algorithm such that given a graph G on n vertices and a function κ , it determines whether G
is κ-degenerate.

Proof. While |E(G)| <


v∈V (G) κ(v) we seek for a vertex v such that 0 ≤ κ(v) − deg(v) ≤


v∈V (G) κ(v) − |E(G)|. If there
exists no such vertex thenG is not κ-degenerate by Proposition 1. If there exists such a vertex v1 we replaceG byG1 = G\{v1}

and replace κ by κ1, where κ1 is obtained by the restriction of κ to V (G) \ v1. While |E(Gi)| <


v∈V (Gi)
κi(v) we repeat the

same procedure and seek for a vertex v with 0 ≤ κi(v) − degGi(v) ≤


v∈V (Gi)
κi(v) − |E(Gi)|. If at some step there exists

no such vertex then the algorithm answers ‘‘NO’’. If there exists such a vertex then we do the same procedure as before.
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