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Abstract

A Skolem sequence is a sequence a1, a2, . . . , a2n (where ai ∈ A = {1, . . . , n}), each ai occurs exactly twice in the sequence and
the two occurrences are exactly ai positions apart. A set A that can be used to construct Skolem sequences is called a Skolem set. The
existence question of deciding which sets of the form A={1, . . . , n} are Skolem sets was solved by Skolem [On certain distributions
of integers in pairs with given differences, Math. Scand. 5 (1957) 57–68] in 1957. Many generalizations of Skolem sequences have
been studied. In this paper we prove that the existence question for generalized multi-Skolem sequences is NP-complete. This
can be seen as an upper bound on how far the generalizations of Skolem sequences can be taken while still hoping to resolve the
existence question.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Skolem sequences were introduced by Skolem [6] in 1957, for the construction of Steiner triple systems. He
considered sets of the form A = {1, 2, . . . , n} and asked whether one can always form a sequence with two copies of
every element k in the set so that the two copies of k are placed k places apart in the sequence. Such sequences are
called Skolem sequences. For example, the set {1, 2, 3, 4} can be used to construct the sequence 42324311, but the set
{1, 2, 3} cannot be used to form such a sequence. A set that can be used to construct a Skolem sequence is called a
Skolem set.

Many different aspects and generalizations of Skolem sequences have been studied. One reason for them being
so well studied is that they have important applications in several branches of mathematics; Shalaby [5] describes
applications in design theory and graph labelings.

Baker [1] introduced generalized Skolem sequences and used them to construct k-extended Skolem sequences.
They have also been used in the construction of extended Langford sequences with small defects [3]. A generalized
Skolem sequence is a sequence of positive integers and null symbols such that an integer appears exactly twice or
not at all, and the two appearances of an integer j are j positions apart. If the integers in A can be used to construct
a generalized Skolem sequence using only the positions in P , we say that (P, A) is a generalized Skolem pair. For
example, ({1, 2, 4, 5, 7, 8}, {1, 5, 7}) is a generalized Skolem pair. The corresponding generalized Skolem sequence is
75011057 (0 occupies positions that are not in P ). Note that a pair (P, A) is a generalized Skolem pair if and only
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if the positions in P can be partitioned into the differences in A, e.g., the example ({1, 2, 4, 5, 7, 8}, {1, 5, 7}) above
is a generalized Skolem pair since {5 − 4, 7 − 2, 8 − 1} = {1, 5, 7}. Hence, we will refer to the elements in A as the
differences in A.

We generalize the notion of generalized Skolem sequences slightly and allow the set of differences A to be a
multiset. We call these sequences generalized multi-Skolem sequences, and the corresponding pair (P, A) generalized
multi-Skolem pair. For example, ({1, 2, 4, 5, 7, 8}, {1, 6, 6}) is a generalized multi-Skolem pair. The corresponding
generalized multi-Skolem sequence is 66011066 (0, occupies positions that are not in P ). Linek and Shalaby [4] give
some necessary conditions for the existence of generalized multi-Skolem pairs. Moreover, they state that a basic question
is to decide which pairs (P, A) are generalized multi-Skolem pairs. We prove that the problem of deciding which pairs
(P, A) are generalized multi-Skolem pairs is NP-complete. The proof is a reduction from the NP-complete problem
Multiple Choice Matching [2]. We refer the reader to Garey and Johnson [2] for an in-depth treatment of the theory of
NP-completeness.

2. NP-completeness of generalized multi-Skolem sequences

We prove that Generalized Multi-Skolem Sequences is NP-complete by giving a reduction from the NP-complete
problem Multiple Choice Matching. Before presenting the reduction we define the two problems formally and prove
some additional properties of Multiple Choice Matching that we will use in the reduction.

2.1. Generalized multi-Skolem sequences

Instance: A multiset A of positive integers, |A| = m, a set P of positive integers, |P | = 2m.
Question: Is (P, A) a generalized multi-Skolem pair? That is, can the positions in P be partitioned into the differences

in A?

2.2. Multiple choice matching

Instance: A graph G= (V , E), a partition of the edges E into disjoint sets E1, E2, . . . , Em, and a positive integer K .
Question: Is there a subset M ⊆ E with |M|�K such that no two edges in M share a common vertex and such that

M contains at most one edge from each Ei , 1� i�m?
The definition of Multiple Choice Matching is taken from Garey and Johnson [2], where it is also stated that the

problem remains NP-complete even if each Ei contains at most two edges, and K =|V |/2. We will make use of these
properties in the reduction. A set M , as defined above is called a multiple choice matching. We think of the edges in Ei

as being labeled with the label i. Another property of Multiple Choice Matching that we need is NP-completeness
even in the restricted case where none of the edges with the same edge label share a common vertex. This is obviously
true since two edges that share a common vertex can never be part of the same matching. Thus, we can simply assign
one of these edges a new edge label not previously used in G, see Fig. 1. In the resulting graph none of the edges
with the same edge label share a common vertex, and it is easy to see that the resulting graph has a Multiple Choice
Matching if and only if the original graph has one.

To simplify the reduction we prove one final property of Multiple Choice Matching. Multiple Choice Matching is
NP-complete even if the number of different edge labels in the graph is greater than half the number of vertices in
the graph. If m equals the number of different edge labels in the graph and the number of vertices is 2n (assuming that

Fig. 1. The label 2 is a new one not previously used in the graph.



Download English Version:

https://daneshyari.com/en/article/419983

Download Persian Version:

https://daneshyari.com/article/419983

Daneshyari.com

https://daneshyari.com/en/article/419983
https://daneshyari.com/article/419983
https://daneshyari.com

