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Abstract

The asymmetric travelling salesman problem with replenishment arcs (RATSP), arising from work related to aircraft routing, is
a generalisation of the well-known ATSP. In this paper, we introduce a polynomial size mixed-integer linear programming (MILP)
formulation for the RATSP, and improve an existing exponential size ILP formulation of Zhu [The aircraft rotation problem, Ph.D.
Thesis, Georgia Institute of Technology, Atlanta, 1994] by proposing two classes of stronger cuts. We present results that under
certain conditions, these two classes of stronger cuts are facet-defining for the RATS polytope, and that ATSP facets can be lifted,
to give RATSP facets. We implement our polyhedral findings and develop a Lagrangean relaxation (LR)-based branch-and-bound
(BNB) algorithm for the RATSP, and compare this method with solving the polynomial size formulation using ILOG Cplex 9.0,
using both randomly generated problems and aircraft routing problems. Finally we compare our methods with the existing method
of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408–427].
It turns out that both of our methods are much faster than that of Boland et al. [The asymmetric traveling salesman problem with
replenishment arcs, European J. Oper. Res. 123 (2000) 408–427], and that the LR-based BNB method is more efficient for problems
that resemble the aircraft rotation problems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The asymmetric travelling salesman problem with replenishment arcs (RATSP) is a generalisation of the well-known
asymmetric travelling salesman problem (ATSP). The problem was introduced by Boland et al. in [6] and arose in the
context of airline planning (see, for example, [5]). Given a digraph G=(V , A) with node set V, arc set A, and asymmetric
costs on the arcs c ∈ R|A|, a tour in G is defined to be a sequence that starts from a node, visits each other node exactly
once, then finishes at the node where the tour is started. A solution of the RATSP, like that of the ATSP, induces a tour
in G which minimizes the total cost. However, the tour must satisfy additional constraints: the arc set A is partitioned
into replenishment arcs, denoted by R and ordinary arcs, denoted by Q=A\R, each node i ∈ V has a positive weight
wi associated with it, and there is a positive weight limit W; a feasible tour cannot accumulate more than W units of
weight before using a replenishment arc. We restrict the RATSP to have at least one replenishment arc, i.e. to have
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R �= ∅, and to have the sum of weights of all nodes greater than the weight limit, i.e. to have
∑

i∈V wi > W ; otherwise
the problem reverts to the usual ATSP. The RATSP can be represented by a weighted digraph, as defined below.

Definition 1.1. A weighted digraphG=(V , A, W, w) is a directed graph with node setV, arc set A partitioned according
to A = Q ∪ R, for Q the set of ordinary arcs and R the set of replenishment arcs, with Q ∩ R = ∅, weights on nodes
w ∈ Z

|V |
+ , weight limit W ∈ Z+, where W �wi for all i ∈ V , and W �wi + wj for all (i, j) ∈ Q.

Note that Definition 1.1 does not restrict Q, since no ordinary arc (i, j) ∈ Q with wi +wj > W can possibly be used
in any feasible solution.

RATSP can be used to model the aircraft rotation problems (ARP) discussed in [5]. The ARP is to sequence a set
of flight legs, subject to the satisfaction of maintenance requirements, and to maximize the profit from linking the
flight legs. In the RATSP model, nodes represent flights, arcs represent aircraft connections, weights represent flying
times and replenishment arcs indicate connections occurring at a maintenance port with sufficient time (or facility)
available to perform maintenance. Aside from the ARP, the RATSP could also be used to model some forms of the
black and white travelling salesman problem (BWTSP) (see, for example, Bourgeois et al. [7] and Ghiani et al. [25]),
and some forms of the asymmetric capacitated vehicle routing problem (ACVRP) (see, for example [40]). In fact, the
latter can be viewed as a special case of the RATSP if the fleet size constraint is absent. In this paper, we are interested
in solving problems that naturally take the form of an RATSP, and in developing an exact algorithm that exploits its
natural structure.

1.1. Previous work and related research

There has been little previous work on the RATSP. Boland et al. in [6] present a formulation with an exponential
number of variables and constraints, and propose a branch-and-price-and-cut method. They experimented on randomly
generated RATSPs very similar to those we report on in Section 4, and some ARPs with up to 190 nodes and 6244
arcs. The RATSP instances tested has only 36 nodes. The method of [6] solved problems with low arc density, or with a
high proportion of replenishment arcs, however solution times are often long considering the size of the problems. For
all problems solved to optimality, the number of branch-and-bound (BNB) nodes required is small, however the time
taken to solve the linear programs with the cut and column generation method is large, since the column generation
subproblems are themselves NP hard. This motivated our Lagrangean relaxation (LR)-based BNB algorithm. The LR
subproblems are assignment problems (AP) that can be solved in O(n2) time and that returns natural integer solutions,
and because of this, the separation of the rest of constraints becomes trivial. In our experiments with the LR-based BNB
algorithm, we solved much larger problems: RATSP instances with up to 100 nodes, and ARPs with up to 519 nodes
and up to 42 732 arcs. Our methods are particularly efficient when solving problems that were considered difficult in
[6]: those with high arc density and/or low proportion of replenishment arcs.

In heuristic methods, Mak and Boland [33] proposed: (1) a simulated annealing (SA) algorithm and (2) a LR
heuristics. The Lagrangean dual problems are solved by a truncated subgradient optimisation method. These methods
were tested in [33] on problems similar to those used in [6], and were found to take much less time to yield upper and
lower bounds with a gap of less than 3%. The SA algorithm performed particularly well: it found optimal solutions in
a third of the problem instances tested, and gaps were below 2.4% in all instances.

In the context of the ARP, Zhu [42] (see also [11]) develops an integer linear programming (ILP) formulation based
on the DFJ-formulation [13] for the ATSP and presents three solution techniques: (1) an LR heuristic with bounds
obtained by solving a LD problem with a scaled, partial subgradient optimisation method; (2) a BNB algorithm using
bounds obtained by solving an AP relaxation at each node of the BNB tree; and (3) a local search heuristic [42] only
tested 11 ARPs. The work of Barnhart et al. in [5] on ARPs does not add anything to the conclusions of Boland et al. in
[6] with respect to the RATSP, but does provide insight into the performance of methods on problems having aircraft
rotation special structure.

There is of course a great deal of work available on closely related problems, such as the ATSP. It would appear that
the most computationally successful methods for solving the ATSP to date are branch-and-cut (BNC) method of [20] in
the case that the AP relaxation does not provide a tight bound on the problem, and the AP relaxation based BNB method
of [9], otherwise. With the ATSP, it is well known that the separation of the subtour elimination constraint, commonly
referred to as SEC, (see [13]), with fractional solutions, can be performed in polynomial time. For the RATSPs, however,
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