
Discrete Applied Mathematics 161 (2013) 1686–1698

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Packing paths: Recycling saves time
Daniel Binkele-Raible ∗, Henning Fernau
Universität Trier, FB 4—Abteilung Informatik, D-54286 Trier, Germany

a r t i c l e i n f o

Article history:
Received 12 October 2010
Received in revised form 5 July 2011
Accepted 8 November 2011
Available online 7 February 2012

Keywords:
Parameterized algorithms
Graphs
Packings
Extremal graph theory

a b s t r a c t

We consider packing problems in graphs under a parameterized perspective. Starting from
amaximal path packing P of size jwe use extremal arguments for determining howmany
vertices of P appear in a path packing of size j+ 1. Generally, one can re-use 2j vertices of
j paths of length three, four and five. This is improved to 3j, 2.5j and 3j vertices.

© 2013 Published by Elsevier B.V.

1. Introduction and definitions

1.1. Our combinatorial problem

In this paper, Pd denotes a path of length d (with d+1 vertices). A Pd-packing of a graph G(V , E) is a set of vertex-disjoint
copies of a Pd in G. It is maximal if any addition of a further Pd would violate the vertex disjointness property. The algorithmic
problem we investigate in this paper is Pd-Packing (d ≥ 3):

Given G(V , E), and the parameter k.
We ask: Is there a Pd-packing of size k?
Hell and Kirkpatrick [8,13] showed that quite generally (Maximum)H-Packing isN P -complete, whereH is a graphwith

at least three vertices in some connected component. So, the task is to find at least k vertex-disjoint copies of H in the given
graph G. A specific case of H-Packing is Pd-Packing, which is therefore N P -complete if d ≥ 2. The case d = 1 corresponds
to the classical matching problem, which is polynomial-time solvable.

We tackle the mentioned path packing problems by an iterative approach, which tries to build a new, bigger packing
from an existing maximal one. This is not a new idea in itself, and also the famous algorithm of Edmonds [3] for solving
P1-Packing uses this approach. Also deterministic approximation algorithms have been proposed that use this idea. Based
on earlier works of Hurkens and Schrijver [10], Bontridder et al. [2] studied P2-packing, considering a series of heuristics Hℓ.
Hℓ proceeds in the following manner: it starts from a maximal P2-packing P and tries to improve it by replacing ℓ P2’s by
ℓ+ 1 P2’s.

When we think of exact algorithms for packing problems, we might relax the described heuristic as follows: Assume we
have a path packing P consisting of j Pd-paths. Can we rely on re-using a certain fraction αd · (d + 1) · j, with αd ∈ [0, 1],
of the (d + 1) · j vertices of P to construct a bigger packing Q, still being able to correctly answer that no larger packing
exists, should we fail to find one in our restricted search space? Notice that the possibly more direct generalization of the
Hℓ-heuristic to the quest to re-use a certain fraction of the j paths (without re-arrangements of the paths) would not work

∗ Corresponding author. Fax: +49 6512013954.
E-mail addresses: raible@informatik.uni-trier.de (D. Binkele-Raible), fernau@uni-trier.de (H. Fernau).

0166-218X/$ – see front matter© 2013 Published by Elsevier B.V.
doi:10.1016/j.dam.2011.11.008

http://dx.doi.org/10.1016/j.dam.2011.11.008
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:raible@informatik.uni-trier.de
mailto:fernau@uni-trier.de
http://dx.doi.org/10.1016/j.dam.2011.11.008

D. Binkele-Raible, H. Fernau / Discrete Applied Mathematics 161 (2013) 1686–1698 1687

when looking for exact solutions. Already in the case of P1-Packing, the mentioned algorithm of Edmonds works with so-
called augmenting paths, whose very idea is to rearrange matching edges along a path and so not to keep as many of the old
P1’s as possible.

So, we propose the combinatorial study of the re-usability factor αd defined above. For instance, Edmonds’s result shows
that α1 = 1. It should be clear that also for the N P -hard path packing problems, the knowledge of a re-usability factor
close to one gives a rich source of knowledge. Then, only a few ‘‘new’’ vertices that are not contained in the packing P need
to be considered to construct Q. This combinatorial question also makes sense for other types of packing problems.

Related to packing problems are partitioning problems, which can be viewed as asking for a packing that uses up every
vertex. Slightly generalizing standard terminology from matching theory, we will call such packings perfect.

1.2. Previous and new work on re-usability factors

We are not aware of any study of any type of re-usability factor that could claim to have determined any such factor
exactly, except from α1 = 1. From an algorithmic perspective, it is quite interesting to find non-trivial lower bounds on the
re-usability factor. This is the topic of the present paper.

Pd-Packing could be seen as a special case of (d+ 1)-Set Packing. In that problem, we are given a collection C of subsets
of a finite universe U satisfying S ∈ C ⇒ |S| ≤ d+1 and an integer parameter k, and we are facing the task to find (at least)
k pairwisely disjoint sets in C. It was shown in [15], although stated in different terminology, that the re-usability factor
of 3-Set Packing is at least 2

3 . As we will see in this paper, that result easily generalizes to ℓ-Set Packing, proving that the
corresponding re-usability factor is lower bounded by 2

ℓ
.

The re-usability factor of P2-packingwas studied by the authors in [5], showing a lower bound α2 ≥
5
6 . In this paper, we

will prove lower bounds on the re-usability factor for Pd-packing, with 3 ≤ d ≤ 5. Namely, we show that α3 ≥
3
4 , α4 ≥

1
2 ,

and α5 ≥
1
2 . To prove our results, we will use extremal combinatorial arguments.

1.3. Algorithmic consequences

Our original aim was to use re-usability to obtain better running times for parameterized algorithms for path packing
problems. This means that we are interested in obtaining running time upper bounds of the form O(f (k)p(n)), where p is
some polynomial depending on the number of vertices of the input graph, f is some arbitrary (computable) function and k
is the number of Pd we seek to find. It is now common to use O∗(f (k)) as a shorthand of a running time estimate of the form
above, suppressing in particular polynomial-time factors depending on the overall input size. More technically speaking, a
problem is fixed-parameter tractable iff it admits an algorithm running in time O∗(f (k)).

How can we exploit our combinatorial results for obtaining better exponential-time parameterized algorithms?
Obviously, the combinatorial question is linked to an iterative approach: assume we have a maximal packing P of size
j, try to find a packing Q of size j+1 or report that there is no such packing. Given a lower bound k on the size of the packing
we are looking for, we have to do at most k iteration steps.

There are two obvious ways to implement this idea for parameterized algorithms (focussing on graph packing problems
in our terminology):

• If we could rely on the graph being of order bounded by some c · k, i.e., technically speaking and using standard
terminology of the area of parameterized algorithms, if we knew about a linear vertex-kernel, then we could use our
knowledge on a lower bound on the re-usability factor by cycling through all subsets S up to a certain size (given by the
re-usability factor) within the vertex set V (P) of P of size j and through vertex subsets S ′ in the complement of V (P)
such that S ∪ S ′ might contain a perfect packing; this has to be verified using, e.g., dynamic programming.

Based on a published kernel for P2-Packing containing at most 7k vertices, see [20], this strategy did work out for P2-
packings, as described in [5] and led to the currently fastest published deterministic algorithm for P2-Packing, running
in time O∗(2.4483k).1

• If no linear vertex-kernel is available, it is not possible to cycle through vertex subsets S ′ in the complement of V (P) in
timeO∗(f (k)). However, one can use color coding or similar techniques to look for these sets. The advantage over a direct
application of color coding lies in the fact that fewer colors need to be involved in this algorithmically rather expensive
part. In this sense, recycling saves time, as the paper title indicates.

Unfortunately, there are no linear kernels known for Pd-Packingwhen d ≥ 3, so we should use the second approach for the
packing problems we investigate.

1 It has been recently report in the Workshop on Kernels at Bergen in 2009 that a group of researchers obtained a 6k kernel for P2-Packing, which
immediately improves the mentioned algorithm to run in time O∗(2.3713k).

Download English Version:

https://daneshyari.com/en/article/419999

Download Persian Version:

https://daneshyari.com/article/419999

Daneshyari.com

https://daneshyari.com/en/article/419999
https://daneshyari.com/article/419999
https://daneshyari.com

