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a b s t r a c t

We present a fast heuristic for an important NP-hard problem, arising in the planning of
a railway passenger system, that calls for the definition of the train units to be assigned
to a given set of timetabled trips, each with a given number of passenger seats requested.
The heuristic is based on the Lagrangian relaxation of a natural formulation of the problem,
whose solution can be found by solving a sequence of assignment problems. With respect
to an already existing method, the heuristic we propose turns out to be much faster in
practice and still providing solutions of good quality. This makes it suitable for all cases in
which the problem either must be solvedmany times, e.g., when it is integrated with other
phases of railway planning, or when it must be solved within short computing time, e.g.,
within real-time operations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The optimization of a railway system is generally performed in separate phases; see e.g. [7]. In this paper, we focus on the
phase called Rolling Stock Planning. Roughly speaking, it consists of finding the optimal assignment of train units, which are
self-contained trains with an engine and passenger seats, to a given set of trips to be performed every day of the considered
planning horizon and whose timetable has been specified in the previous Timetabling phase.

According to the requirements of the different railway companies, different versions of Rolling Stock Planning arise in
the real-world. For instance, in our case study, we have to decide for each train-unit the sequence of the corresponding
assigned trips, while in the case of NS (the main Dutch Train Operator company) for each trip the successor trip is given on
input. On the other hand, when combining more than one train unit for covering a trip, here we do not consider the order of
the train units, while in the NS case this must be taken into account [10,14]. A detailed literature review is out of the scope
of this paper as it can be already found in [6,7]. In any case, there are many papers dealing with the assignment of train
units to trips [1,2,4,10,16,17]. In other cases the problem consists in finding an optimal assignment of locomotives and cars,
instead of self-contained train units, to the given set of trips [5,8,9,12]. In all these references, different heuristic and exact
approaches are described, mostly based on Integer Linear Programming (ILP) formulations solved by either general-purpose
solvers, branch-and-price, Benders’ decomposition, or branch-and-cut. In some cases uncertainty is taken into account by
using stochastic optimization techniques.

In the recent years, approaches that integrate two consecutive phases of the railway systemoptimizationwere developed;
see e.g. [3,13,15]. For instance, consider the potential integration of the Timetabling phase with the Rolling Stock Planning
phase: the various candidate timetables produced in the former may be evaluated also by taking into account the quality of
the solution obtained for the latter. To this aim, it is essential to have fast and effective algorithms for Rolling Stock Planning,
to be applied for every candidate Timetabling solution.

In addition, the study of real-time solutions has becomemore and more important in railway optimization. In particular,
if a disruption takes place, a solution that has been obtained in the planning phasemight become infeasible at an operational
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level. In this case, a recovery algorithm has to be executed to recompute a good feasible solution with the new given data.
Also in this situation, fast and effective algorithms are needed.

The contribution of this paper goes in this direction: we develop a fast and effective heuristic algorithm for our case
study. We present computational experiments comparing, on real-world instances of a regional Italian Train Operator, the
newalgorithmwith the previousmuchmore sophisticated approach proposed in [6]. The computational experiments clearly
show that the new algorithm has good behavior both in terms of computing time and quality of the solution.

It is interesting to note that the new heuristic is based on the natural Lagrangian relaxation of a natural Integer Linear
Programming (ILP) formulation of the problem, which we already considered in [6] where we summarize the outcome as
follows ‘‘. . . our implementation of a customary heuristic method based on this Lagrangian relaxation performed extremely
poorly in practice for our case study, in terms of both lower bound produced and solution found. . .Given that the results
were so poor, we do not even present these results’’. What we missed in [6] was an effective definition of the score to use
in the construction of a solution and the use of local search procedure to improve the solution constructed.

The paper is organized as follows. In Section 2, we formally describe the problem in our case study and present its
canonical representation on a graph. In Section 3, we propose an ILP formulation with arc variables, a heuristic algorithm,
based on the Lagrangian relaxation of two sets of constraints and on the decomposition relaxation of another set of
constraints, and a local search procedure. In Section 4, we present computational experiments on a set of real-world
instances. Conclusions and guidelines for future research are discussed in Section 5.

2. The Train-Unit Assignment problem

Wewill call the specific Rolling Stock Planning problem in our case study Train-Unit Assignment (TUA). Its input consists
of a set of train trips and a set of train-unit types. Each trip has a departure station, an arrival station, a departure time, an
arrival time, and a seat request, given by the estimated number of passengers traveling on the trip. Each train-unit type has
a number of available units and a capacity, given by the number of available seats for each unit. Train units can be combined
with each other in order to fulfill the seat requests of the trips. We say that a trip is coveredwhen its seat request is fulfilled
and uncovered otherwise.

We have to decide which of the available train units to use, and to assign each train unit used a sequence of trips to be
performedwithin the same day by the unit. In reality, each physical train unit of a given typewill perform on each day of the
time horizon the daily sequence of trips assigned to some train unit of that type in the TUA solution. This generally results in
daily sequences of trips for physical train units that are repeated cyclically over the time horizon. Given that defining such
cyclic sequences is easy after having defined the daily sequences in TUA (see also [6]), it is natural to focus only on the latter.
The objective is to minimize the number of train units used subject to the following constraints:

• covering: the seat request must be satisfied for each trip;
• combination: a maximum number of train units can be combined in order to cover each trip;
• sequencing: two trips can be performed in sequence by a given train unit in the same day if and only if there is enough

time for the train unit for traveling from the arrival station of the first trip to the departure station of the second trip
(note that the traveling time between two stations generally depends on the type of the considered unit);

• availability: no more units than the ones available for each type can be used.

Formally, let n be the number of trips and p the number of train-unit types. For each trip j = 1, . . . , n, let rj be the
seat request, tj be the departure time and uj be the maximum number of train units that can be assigned to the trip. For
each train-unit type k = 1, . . . , p, let dk be the number of available train units and sk the capacity. As discussed in [6], if
needed we redefine (increase) the seat request rj of each trip j so that it is always possible to find a combination of train
units whose overall capacity is exactly rj. This preprocessing procedure applied to the seat requests is very simple and fast,
leads to stronger lower bounds, and is important for both the constructive and the local search phase of the algorithm we
propose. Indeed, it is useful to know how ‘‘well’’ a train unit matches the seat request of a trip in order to determine which
are the best trips to be assigned to the train unit. Thus, if a trip j has a seat request rj that is not equal to any combination of
up to uj train unit capacities sk, then we redefine its seat request, considering that the number of seats assigned to it in the
TUA solution will always be higher than rj.

We introduce a directed complete multigraph G = (V , A) to represent the problem. The node set V corresponds to the
set of trips, and the arc set A is partitioned into p subsets A1, . . . , Ap, where arc subset Ak is associated with train units of
type k and the simple directed graph Gk

= (V , Ak) is complete. The sequencing constraints are implicitly represented by
the costs of the arcs. In particular, if trip j can be performed right after trip i by a train unit of type k in the same day, the
cost ckij of arc (i, j)

k
∈ Ak is given by the time in minutes elapsing between the departure of trip i and the departure of trip j

(i.e., ckij = tj − ti). Otherwise, the cost ckij of arc (i, j)
k
∈ Ak is given by the time in minutes elapsing between the departure of

trip i and the departure of trip j on the next day (i.e., ckij = tj − ti + 1440). In this way, each cycle in Gk has a cost that is an
integer multiple of 1440 (the number of minutes in a day), say 1440q, and corresponds to the trips that can be assigned to q
train units of type k. Therefore, the problem calls for a minimum-cost collection of cycles in G such that the total length of
the cycles in Ak does not exceed 1440dk and each vertex j is visited by at most uj cycles with overall capacity at least rj (the
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