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Approximation algorithms independent sets of a given size in these graphs, which is a result interesting per se.

© 2012 Elsevier B.V. All rights reserved.

Available online 9 February 2012

Keywords:

1. Introduction

Given a graph G(V, E), an independent set of G is a subset S C V such that, for any (v;,vj)) € S x S, (v, v)) & E. A
dominating setis a subset D C V such that every vertex in V'\ D has at least one neighbor in D. The problems of determining a
maximum size independent set and a minimum size dominating set, denoted by MAX INDEPENDENT SET and MIN DOMINATING
SET, respectively, are two paradigmatic problems in complexity theory and in combinatorial optimization. An independent
dominating set is an independent set that is maximal for inclusion, i.e., a set that is both an independent set and a dominating
set. The MIN INDEPENDENT DOMINATING SET problem consists of determining a minimum size independent dominating set.
In the literature, MIN INDEPENDENT DOMINATING SET is frequently referred to as the minimum maximal independent set
problem.

MIN INDEPENDENT DOMINATING SET is known to be NP-hard [18]. It is very extensively studied in the framework of
polynomial time approximation and turns out to be one of the hardest problems to approximate. For instance, it is shown
to be min PB-complete, in [23,24] (where min PB is the class of minimization problems whose objective functions are
bounded by a polynomial in the size of the input) and even inapproximable (in the standard approximation framework)
within ratio |V|!~¢, for any € > 0, unless P = NP [20]. Also, in the differential approximation framework!,it is shown to be
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1 Here, the approximation performance of an algorithm is measured with respect to the so-called differential approximation ratio [14], defined by
(w(I) — my(1,5))/(w() — opt(I)) where, for an instance I of a problem IT approximately solved by an algorithm A, m, (I, S) is the value of a solution
S computed by A on I and w(I) and opt(l) are the values of an optimal solution and a worst solution on I, respectively. In other words, the differential
approximation ratio measures the relative position of the value of an approximate solution in the interval [optimal-value solution of I, worst-value feasible
solution of I].
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0-DAPX-complete [2], where 0-DAPX is the class of optimization problems that are not differentially approximable within
any ratio strictly greater than 0, in other words, for any problem of this class, any approximation algorithm has worst-case
approximation ratio equal to 0.

Except polynomial time approximation, another way, that recently has received great attention from the theoretical
computer science community, to cope with intractability of NP-hard problems is to design algorithms able to solve them
to optimality with worst-case exponential running time that is provably as low as possible. Here, we study solution of MIN
INDEPENDENT DOMINATING SET by such algorithms. For MIN INDEPENDENT DOMINATING SET, the trivial 0*(2/V!) bound has been
initially (see [22]) broken down to 0*(3V1/3) = 0*(2°>%°IV]) (notation 0*(-) is used to measure complexity of an algorithm
ignoring polynomial factors) using a result presented in [25], namely that the number of maximal (for inclusion) independent
setsin a graph is at most 3!V!/3, This result has been improved in [ 19] where, using a branch & reduce technique, an algorithm
optimally solving MIN INDEPENDENT DOMINATING SET with running time 0*(2°441V) = 0*(1.358/"!) is proposed. Let us note
that the best known exact algorithms for MAX INDEPENDENT SET and MIN DOMINATING SET have worst-case running times
0%(1.2125!V1) [8] and 0*(1.4969!"1) [27], respectively.

In this paper, we first devise a branching algorithm that computes a minimum independent dominating set in general
graphs with running time 0*(1.3351V) = 0*(2°4'7IVly and polynomial space. More precisely, in Section 2 the general
recurrence of the exact branching algorithm is presented, while Sections 3 and 4 deal with the possible branchings that
may occur in the proposed exact algorithm and discuss the related complexities. Section 5 proposes another way to handle
NP-hard problems, that lays in the midway between polynomial time approximation and exact computation, the so-called
moderately exponential time approximation. The goal of the issue moderately exponential time approximation algorithms
is to explore approximability of highly inapproximable (in polynomial time) problems in superpolynomial or moderately
exponential time. Roughly speaking, if a given problem is solvable in time say O*(y™) but it is NP-hard to approximate
within some ratio r, we seek r-approximation algorithms with complexity - significantly - lower than O*(y"). This issue has
already been considered for several other problems such as MINIMUM SET COVER [11,4], MIN COLORING [5], MAX INDEPENDENT
SET and MIN VERTEX COVER [6], MIN BANDWIDTH [12,17], ...Similar issues arise in the field of fixed-parameter complexity,
where approximation notions have been introduced, for instance, in [15,10]. In this article, we tackle approximation of MIN
INDEPENDENT DOMINATING SET by moderately exponential time algorithms and show that there exist (14 ¢)-approximations
obtained in time 0* (20417(1—¢/168)n) for every e < 5. We also propose algorithms with significantly better running times for
ratios greater than 3. We finally study the problem in triangle-free and bipartite graphs. We first give a general bound on
the number of maximal independent sets of size at most k in these graphs, result of independent interest. Combining this
result with the previous techniques leads to approximation algorithms with better running times.

In what follows, given a graph G(V, E) and a vertex v € V, we denote by opt(G) the value of the optimum in G. Also, we
denote by N(v) the neighborhood of v, by N[v] = N(v) U {v} the closed neighborhood of v, by d(v) = |[N(v)| the degree
of v. For a subset H C V, we denote by G[H] the subgraph of G induced by H. For v € H, for some H C V, we denote by
dy, (v) the degree of v in G[H]; when no confusion arises, we simplify notations using d’(v) instead. For convenience, we set
N[H] = {N[v] : v € H}. We use § and A to denote the minimum and maximum degree of G, respectively. For simplicity,
we set n = |V| and m = |E|; T(n) stands for the maximum running time an algorithm requires to solve MIN INDEPENDENT
DOMINATING SET in a graph containing at most n vertices.

Branch & reduce-based algorithms have been used for decades, and a classical analysis of their running times leading to
worst case complexity upper bounds is now well-known. If one knows that computing a solution on an instance of size n
amounts to computation of a solution on a sequence of p instances of respective sizesn — ky, ..., n — k,, one can write:

T(n) <Y T(n—k)+qn) (1

i<p

for some polynomial g. The running time T (n) is bounded by 0*(c"), where c is the greatest real root of 1 = Zisp x~%. This
root is often called the contribution of the branching to overall complexity factor, or the branching factor. In the sequel,
we will omit for simplicity to precise the additive polynomial term q(n) in recurrence relations. Of course, it is possible that
there does not exist only one single recurrence as in (1), but several ones, depending on the instance. In this case, the running
time is never greater than what is needed to solve an instance where at every step we make a branching that has the highest
possible branching factor, i.e., the largest solution of (1). This is actually not true anymore when doing muitiple branchings
such as “either we take a or not, and if we add a to the solution then we know that b has degree 3 in the remaining graph
and one can make a very good branching on it...” Indeed, it might be the case that the global worst case of the multiple
branching does not correspond to the worst cases of the single branchings it involves. In the sequel, we keep this remark in
mind in order to compute worst case running times involving multiple branchings.

2. General recurrence

Following an idea proposed in [19], we partition the graph into “marked” and “free” vertices. Initially, all the vertices
are free. Then, in a remaining instance (after some branching steps), a marked vertex is a vertex not yet dominated (by a
vertex already chosen to be in the solution under construction) but for which we have already decided not to take it in the
solution. Indeed, we generalize the problem at hand in the following way: “given a subset W C V (W is the set of free
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