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a b s t r a c t

The study of cohesive subgroups is an important aspect of social network analysis. Cohesive
subgroups are studied using different relaxations of the notion of clique in a graph. For
instance, given a graph and an integer k, the maximum edge subgraph problem consists of
finding a k-vertex subset such that the number of edgeswithin the subset ismaximum. This
work proposes a polyhedral approach for this NP-hard problem. We study the polytope
associated to an integer programming formulation of the problem, present several families
of facet-inducing valid inequalities, and discuss the separation problem associated to
these families. Finally, we implement a branch and cut algorithm for this problem. This
computational study illustrates the effectiveness of the classes of inequalities presented in
this work.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Social network analysis is an important tool to study the relationships and flows between people, organizations, and
other entities. Social networks are encoded by graphs with vertices representing the entities, and edges representing
interdependencies between them. An important aspect of social network analysis is the detection of cohesive subgroups,
which are subsets of actors among whom there are relatively strong, direct, intense, frequent, or positive ties [26]. Although
one could potentially define such a subgroup with the concept of clique, this does not provide a full picture because in
practice missing edges frequently exist but that is not a strong enough reason to claim that two vertices cannot belong to
the same group. For example, if two individuals in a social network are not friends because they fought but share most
of their friends, they would belong to the same social group. For this reason, it is more satisfactory to define a cohesive
subgroup using a relaxation of the definition of clique.

Let G = (V , E) be the graph that represents the social network of interest. One possible approach to study cohesive
subgroups is the use of quasi-cliques, which are subgraphs with a pre-specified minimum edge density. Here, the density of
a subgraph is the quotient between the number of edgeswith both endpoints in the subgroup and the total number of edges.
Formally, given a real number 0 ≤ γ ≤ 1, a subgraph G′

= (N ′, E ′) ⊆ G is a γ -quasi-clique if 2|E ′
|/(|N ′

|(|N ′
| − 1)) ≥ γ .

In the example of the social network of friends referred to earlier, missing relationships would represent that pairs of
individuals in the groupmay not be friends with each other. In earlier work, we strongly relied on quasi-cliques to study the
network of bilateral investment treaties signed between countries of the world [24]. Besides having used them to identify
cohesive subgroups, they also allowed us to compare different random topologies. Indeed, cliques are inexact because there
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is no guarantee that randomly generated edges will form the same cliques as in the original graph. Quasi-cliques, instead,
can capture the topological structure regardless of which particular random edges are present in the network.

Since quasi-cliques are characterized by their size and density, they have been studied by considering two formulations
that are dual of each other, much like other bi-criteria optimization problems. One can either be given (i) a specified edge
density γ ∈ [0, 1], and find the largest γ -quasi-clique, or be given (ii) a size k of a subgraph, and find the densest set of
k vertices. The second approach – the one we follow in this paper – is known in the graph and optimization literature as
the maximum edge subgraph problem (MESP) [4] or dense/densest/heaviest k-subgraph problem [12] or k-cluster problem [8].
Concretely, given an integer k < |V |, the MESP consists of finding a vertex subset A ⊂ V with |A| = k such that |E(A)| is
maximum, where E(A) = {ij ∈ E : {i, j} ⊂ A}.

The maximum clique problem reduces to the MESP, hence the latter is NP-hard [3]. Indeed, if the MESP can be solved
in polynomial time, then we can polynomially search the greatest k for which the answer to the MESP is a complete
subgraph, thus solving the maximum clique problem. This problem remains NP-hard even for some simpler classes of
graphs, such as comparability, triangle-free and chordal graphs [8]. The complexity of the problemmotivated [1,4,12,15,23]
to look for approximation algorithms and heuristics, [8,19,20] to consider restricted classes of graphs, and [6] to introduce
several integer programming formulations. In this work, we consider the polytope associated to the formulation MIP1
of [6]. We introduce several families of facet-inducing valid inequalities and discuss the separation problem associated to
these families. Note that [21,22], who independently considered a generalization of our problem, also present families of
inequalities that are facet-inducing. Some of those facets are related to ours, as we point out when we present our facets.
Although the main contribution of our paper lies with the study of the polytope and its facets, for completeness we also
perform a small computational study to test the empirical strength of the families of facets and comment onwhich aremost
effective computationally.

The remainder of this paper is organized as follows. Section 2 presents the formulation and studies some of its properties.
In Section 3,we introduce some classes of valid inequalities for this formulation, discuss inwhat situations they induce facets
of the associated polytope, and explore the computational complexity of the corresponding separation problems. Section 4
describes the implementation of a branch and cut algorithm based on these classes of valid inequalities and reports on our
computational results. Finally, we conclude with some remarks and directions for future research.

2. Integer programming formulation

To represent quasi-cliques, we introduce a binary vertex variable xi for every i ∈ V . We set xi = 1 if and only if the vertex
i belongs to the k-subset A ⊂ V , which defines a feasible solution. For every ij ∈ E, we introduce a binary edge variable
zij that satisfies that ij ∈ E(A) when zij = 1. Notice that zij and zji denote the same variable because edges are undirected.
With these definitions, the maximum edge subgraph problem can be formulated using the following integer program. To
be consistent with the literature, we refer to this formulation asMIP1.

max

ij∈E

zij (1a)

s.t.

i∈V

xi = k (1b)

zij ≤ xi ∀ij ∈ E (1c)

zij ≤ xj ∀ij ∈ E (1d)

xi ∈ {0, 1} ∀i ∈ V (1e)
zij ∈ {0, 1} ∀ij ∈ E. (1f)

Here, the objective counts the number of edges in the subgraph, the first constraint guarantees that the subgraph has the
desired size, and the second and third constraints imply that only edges with both endpoints in the subset can be selected.
Note that (1f) can be dropped from the formulation, thus letting the edge variables be continuous and free variables. In an
optimal solution, the edge variables will be binary automatically.

We define P(G, k) ⊆ R|V |+|E| to be the convex hull of the vectors (x, z) satisfying constraints (1b)–(1f). Moreover, we
let PLP(G, k) ⊆ R|V |+|E| be the linear relaxation of P(G, k), as given by constraints (1b)–(1d), 0 ≤ xi ≤ 1 for i ∈ V , and
0 ≤ zij ≤ 1 for ij ∈ E. The next result implies that the polytope does not lose more dimensions than the single one lost by
the equality constraint (1b). This proof uses standard arguments and is therefore omitted.

Theorem 1. The dimension of the polytope P(G, k) is |V | + |E| − 1.

3. Valid inequalities

Each of the following subsections introduces a class of facet-inducing valid inequalities for P(G, k) and studies the
complexity of the associated separation problem. All these classes arise from combinatorial structures in the original graph
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