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a b s t r a c t

A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate
the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the
associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all
bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is
the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction,
the triangular prism. Using this result, we characterize graphs whose edge-biclique
hypergraph is Helly and provide a polynomial time recognition algorithm. We further
study a hereditary version of this property and show that it also admits polynomial time
recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs.
We conclude by describing some interesting properties of the 2-section graph of the edge-
biclique hypergraph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The intersection graph of a collection of sets is defined as follows. The vertices correspond to the sets, and two vertices
are adjacent just if the corresponding sets intersect. Intersection graphs are a central theme in algorithmic graph theory
because they naturally occur in many applications. Moreover, they often exhibit elegant structure which allows efficient
solution of many algorithmic problems. Of course, to obtain a meaningful notion, one has to restrict the type of sets in the
collection. In fact, [19], every graph can be obtained as the intersection graph of some collection of sets. By considering
intersections of intervals of the real line, subtrees of a tree, or arcs on a circle, one obtains interval, chordal, or circular-
arc graphs, respectively. For these classes, a maximum clique or a maximum independent set can be found in polynomial
time [9]. We note that one can alternatively define an interval graph as an intersection graph of connected subgraphs of
a path; similarly intersection graphs of connected subgraphs of a tree produce chordal graphs, and intersection graphs of
connected subgraphs of a cycle produce circular-arc graphs. More generally, one can consider intersections of particular
subgraphs of arbitrary graphs. This naturally leads to intersections of edges, cliques, or bicliques of graphswhich correspond
to line graphs, clique graphs, and biclique graphs, respectively.

We focus on edge intersections of subgraphs. The edge intersection graph of a collection of subgraphs is defined in the
obvious way, as the intersection graph of their edge-sets. In hypergraph terminology, this can be defined as the line graph
of the hypergraph whose hyperedges are the edge-sets of the subgraphs. We say that subgraphs are edge intersecting if
they share at least one edge of the graph. For instance, the EPT graphs from [10] are exactly the edge intersection graphs of
paths in trees. For another example, consider the double stars of a graph G, i.e., the subgraphs formed by the sets of edges
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incident to two adjacent vertices. The edge intersection graph of double stars of G is easily seen to be precisely the square
of the line graph of G. In contrast, if we consider the stars of G, i.e., sets of edges incident with individual vertices, then the
edge intersection graph of the stars of G is the graph G itself [19].

In this context, one can study edge intersections of particular subgraphs by turning the problem into a question about
vertex intersections of cliques of an associated auxiliary graph. In this auxiliary graph, vertices correspond to edges of the
original graph G, and two vertices are adjacent just if the corresponding edges belong to one of the particular subgraphs
considered. In the language of hypergraphs, this graph is defined as the two-section of the hypergraph of the edge-sets of
the subgraphs. For instance, in line graphs vertices are adjacent if and only if the corresponding edges belong to the same
star of G. A similar construction produces the so-called edge-clique graphs from [8] (see also [4–7,17,18]). Naturally, every
occurrence of the particular subgraph in G corresponds to a clique in such auxiliary graph, and although the converse is
generally false, one may obtain useful information by studying the cliques of the auxiliary graph.

Next, we turn our attention to the Helly property. A collection of sets is said to have the Helly property if for every
subcollection of pairwise intersecting sets there exists an element that appears in each set of the subcollection. For instance,
any collection of subtrees of a tree has the Helly property. On the other hand, arcs of a circle or cliques of a graph do not
necessarily have the Helly property. Note that it is, in fact, the Helly property that allows us to efficiently find a maximum
clique in a chordal graph or in a circular-arc graph (where theHelly property is ‘‘almost’’ satisfied [9]). By comparison, finding
a maximum clique appears to be hard in clique graphs (intersection graphs of cliques). For a similar reason, recognizing
chordal graphs and circular arc graphs is possible in polynomial time [9], whereas it is hard for clique graphs [1].

Alternatively, one can impose the Helly property on intersections, and then study the resulting class of graphs. For
instance, cliques of a graph do not necessarily satisfy the Helly property, but if we only consider graphs in which they do, we
obtain the class of clique-Helly graphs studied in [16]. In the same way, one can study the classes of neighbourhood-Helly,
disc-Helly, biclique-Helly graphs [11], and also their hereditary counterparts [12,15].

In this paper, we investigate the intersections of edge-sets of bicliques. With each graph Gwe associate the edge-biclique
hypergraph, denoted by EB(G), defined as follows. The vertices of EB(G) are the edges of G, and the hyperedges of EB(G)
are the edge-sets of the bicliques of G. We remark that while for cliques the usual vertex intersection graphs (i.e., clique
graphs and hypergraphs) are the most natural construct, for bicliques both the vertex and the edge intersection graphs are
natural, and have interesting structure. (See [13] for a characterization of vertex intersection graphs of bicliques.)

The paper is structured as follows. First, in Section 2 we observe some basic properties of the two-section graph of the
edge-biclique hypergraph EB(G). This will allow to prove that EB(G) is conformal (it is the hypergraph of cliques of its two-
section) if and only if G contains no induced triangular prism. Next, in Section 3we discuss the Helly property and prove that
EB(G) is Helly if and only if the clique hypergraph of the two-section of EB(G) is Helly. This will imply polynomial time
testing for the Helly property on EB(G). In Section 4 we look at a hereditary version of this property by studying graphs G
such that for every induced subgraph H of G, the hypergraph EB(H) is Helly. We show that the class of such graphs admits
a finite forbidden induced subgraph characterization. This will also yield a polynomial time recognition algorithm for the
class. In Section 5, we conclude the paper by further discussing properties of the two-section graph of EB(G). In particular,
we compare it to the line graph of G, point out some small graphs that are not two-sections of edge-biclique hypergraphs,
and characterize graphs whose every induced subgraph is the two-section of some edge-biclique hypergraph.

2. Notation and basic definitions

A graph G = (V , E) consists of a vertex set V and a set E of edges (unordered pairs from V ). A hypergraph H = (V , E)
consists of a vertex set V and a set E ⊆ 2V of hyperedges (subsets of V ). For a set X of vertices of a graph G, we denote by
G[X] the subgraph of G induced by X . A set X is a clique of G if G[X] is a complete graph and X is (inclusion-wise) maximal
with this property. A set X is a biclique of G if G[X] is a complete bipartite graph and X is (inclusion-wise) maximal with this
property.

For a hypergraphH = (V , E) and a subset E ′
⊆ E , we say thatH ′

= (V , E ′) is a partial hypergraph ofH . A subhypergraph
of H induced by a set A ⊆ V is the hypergraph H[A] = (A, {X ∩ A | X ∈ E} \ {∅}).

To make the presentation clearer, we shall use capital letters G,H, . . . to denote graphs and calligraphic letters G, H, . . .
to denote hypergraphs. Similar convention shall be used for graph and hypergraph operations. In particular, the following
operations shall be used throughout the paper.

Let H = (V , E) be a hypergraph. The dual hypergraph of H , denoted by H∗, is the hypergraph whose vertex set is E and
whose hyperedges are {Xv | v ∈ V } where Xv = {X | X ∈ E ∧ X ∋ v}. In other words, each Xv consists of all hyperedges
of H that contain v. The 2-section of H , denoted by (H)2, is the graph with vertex set V where two vertices u, v ∈ V are
adjacent if and only if u, v ∈ X for some X ∈ E . The line graph of H , denoted by L(H), is the graph with vertex set E where
X, X ′

∈ E are adjacent if and only if X ∩ X ′
≠ ∅. Note that L(H) is the 2-section of the dual hypergraph of H .

Let G = (V , E) be a graph. The line graph of G, denoted by L(G), is the graph with vertex set E where two edges of E are
adjacent if and only if they share an endpoint in G. The clique hypergraph of G, denoted by K(G), is the hypergraph whose
vertex set is V andwhose hyperedges are the cliques of G. The clique graph of G, denoted by K(G), is the graphwhose vertices
are the cliques of Gwhere two cliques are adjacent if and only if they have a vertex in common. In other words, K(G) is the
line graph of the clique hypergraph K(G). The edge-biclique hypergraph of G, denoted by EB(G), is the hypergraph with
vertex set is E whose hyperedges are the edge-sets of the bicliques of G. The biclique line graph of G, denoted by LG, is the
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