Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

First-Fit coloring of bounded tolerance graphs

H.A. Kierstead ^{[a,](#page-0-0)[∗](#page-0-1)}, Karin R. Saou[b](#page-0-2) ^b

^a *Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA* ^b *Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA 24153, USA*

a r t i c l e i n f o

Article history: Received 3 February 2009 Received in revised form 6 May 2010 Accepted 7 May 2010 Available online 11 June 2010

Keywords: First-Fit Grundy number Tolerance graph

a b s t r a c t

Let $G = (V, E)$ be a graph. A tolerance representation of G is a set $\mathcal{I} = \{I_v : v \in V\}$ of intervals and a set $t = \{t_v : v \in V\}$ of nonnegative reals such that $xy \in E$ iff $I_x \cap I_y \neq \emptyset$ and $||I_x ∩ I_y|| \ge \min\{t_x, t_y\}$; in this case *G* is a tolerance graph. We refine this definition by saying that *G* is a *p*-tolerance graph if $t_v/|I_v| \leq p$ for all $v \in V$.

A Grundy coloring *g* of *G* is a proper coloring of *V* with positive integers such that for every positive integer *i*, if $i < g(v)$ then v has a neighbor u with $g(u) = i$. The Grundy number Γ (*G*) of *G* is the maximum integer *k* such that *G* has a Grundy coloring using *k* colors. It is also called the First-Fit chromatic number.

For fixed $0 \le p < 1$ we prove that if *G* is a *p*-tolerance graph then, $\Gamma(G) = \Theta\left(\frac{\omega(G)}{1-p}\right)$,

and in particular, $\Gamma(G) \leq 8 \left[\frac{1}{1-p} \right] \omega(G)$. Also, we show how restricting *p* forbids induced copies of $K_{s,s}$. Finally, we observe that there exist 1-tolerance graphs *G* with $\omega(G) = 2$ and arbitrarily large Grundy number.

© 2010 Elsevier B.V. All rights reserved.

PPLIED
ATHEMATICS

1. Introduction

In this paper we study the performance of the online coloring algorithm First-Fit on tolerance graphs. First, we review some notation and definitions. For an interval $I = [a, b]$, let ||I|| denote the length $b - a$ of *I*. For a graph *G*, denote its clique number by $\omega(G)$, its independence number by $\alpha(G)$ and its chromatic number by $\chi(G)$. We say that a graph class β is χ-bounded if there exists a function *f* such that χ (*G*) ≤ *f*(ω(*G*)) for all *G* ∈ G. In this case *f* is called a *bounding function* for G. For a graph *H* let Forb(*H*) denote the class of graphs that do not contain *H* as an induced subgraph.

1.1. Online and First-Fit coloring and Grundy numbers

An *online graph G*[≺] is a graph *G* together with an ordering ≺ of its vertices. This ordering is called the *presentation* of *G*. Let *G* ≺ *i* denote the online graph induced by the first *i* vertices of ≺. An *online coloring algorithm* is an algorithm A that colors the vertices of *G* so that the color of the *i*th vertex v_i depends only on G_i^{\prec} . The number of colors used by A on G^{\prec} is denoted by $\chi_A(G^{\prec})$ and $\chi_A(G)$ is the maximum of $\chi_A(G^{\prec})$ over all possible orderings \prec . A class \emptyset of graphs is online χ -bounded if there exist an online algorithm A and a function f such that $\chi_A(G^{\prec}) \leq f(\omega(G))$ for all graphs $G \in \mathcal{G}$ and all presentations ≺ of *G*. In this case *f* is called an online *bounding function* for G.

First-Fit (*FF*) is the online algorithm that colors the *i*th vertex v*ⁱ* of an online graph *G* [≺] with the least positive integer that has not been used to color any of its neighbors in G_i^{\prec} . A class g is First-Fit χ -bounded if there exists a function f such that

Corresponding author. *E-mail addresses:* [kierstead@quest.net,](mailto:kierstead@quest.net) kierstead@asu.edu (H.A. Kierstead), saoub@roanoke.edu (K.R. Saoub).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2010 Elsevier B.V. All rights reserved. [doi:10.1016/j.dam.2010.05.002](http://dx.doi.org/10.1016/j.dam.2010.05.002)

 $\chi_{FF}(G^{\prec}) \le f(\omega(G))$ for all graphs $G \in \mathcal{G}$ and all presentations \prec of G. In this case f is called a First-Fit *bounding function* for G. Finally, χ*FF* (G) = max*G*∈^G χ*FF* (*G*).

A *Grundy coloring* of a graph *G* = (*V*, *E*) is a proper coloring *g* of *G* with positive integers such that

$$
\forall v \in V \,\forall k \in \mathbb{Z}^+ \quad (k < g(v) \Rightarrow \exists u \in N(v) \, g(u) = k). \tag{*}
$$

The *Grundy number* Γ (*G*) of *G* is the maximum integer *k* such that *G* has a Grundy coloring using the color *k*. An example of a Grundy coloring is shown above in [Fig. 1.](#page-1-0) It is easy to see that Γ (*G*) = χ*FF* (*G*): First-Fit produces a Grundy coloring, and every Grundy coloring can be realized by First-Fit, if the vertices are presented so that $g(x) < g(y)$ implies that $x \prec y$. In proofs it is more convenient to consider Grundy number than First-Fit colorings, since then we can ignore presentations. We also define a *weak Grundy coloring* to be a possibly improper coloring that satisfies ([∗](#page-1-1)).

1.2. Interval and tolerance graphs

A graph $G = (V, E)$ is an *interval graph* if for each vertex $x \in V$ there exists a closed interval $I_x = [L(x), R(x)]$ of **R** such that $xy \in E$ if and only if $I_x \cap I_y \neq \emptyset$. In this case the set $\mathcal{I} := \{I_y : v \in V\}$ is called an interval representation of G. If $R(x) < L(y)$ we write $I_x < I_y$. Then 1 is also an interval representation of the *interval order* defined on *V* by $x < y$ iff $I_x < I_y$ and *G* is the cocomparability graph of this order.

Tolerance graphs were introduced by Golumbic and Monma [\[7\]](#page--1-0) as a natural generalization of interval graphs. A graph *G* = (V, E) is a *tolerance graph* if for each vertex $x \in V$ there exists a closed interval $I_x = [L(x), R(x)]$ of **R** and a nonnegative real t_x such that $xy \in E$ if and only if $l_x \cap l_y \neq \emptyset$ and $||l_x \cap l_y|| \geq \min\{t_x, t_y\}$. In this case $\langle l, t \rangle$ is called a tolerance representation of *G*, where *t* maps $x \mapsto t_x$. It is useful for us to introduce the following classification of tolerance graphs. Define *G* to be a *p*-*tolerance graph* if it has a tolerance representation $\langle \mathcal{I}, t \rangle$ such that $t_x / ||I_x|| \leq p$ for all $x \in V$. Then interval graphs are 0-tolerance graphs. In the past, 1-tolerance graphs have been extensively studied under the name *bounded tolerance graphs* and $\frac{1}{2}$ -tolerance graphs have been studied under the name *totally bounded tolerance graphs*. If one views tolerance graphs as imprecise interval graphs, then *p* measures the degree of imprecision.

Let \mathcal{T}_p denote the class of *p*-tolerance graphs and $\mathcal{T}_{p,w}$ be the restriction of \mathcal{T}_p to graphs with clique size at most w. Golumbic and Monma [\[7\]](#page--1-0) proved that bounded tolerance graphs are cocomparability graphs and Golumbic et al. [\[8\]](#page--1-1) proved that all tolerance graphs are perfect. For further details the reader is referred to the excellent books [\[6\]](#page--1-2) by Golumbic on algorithmic graph theory and [\[9\]](#page--1-3) by Golumbic and Trenk on tolerance graphs.

1.3. Old and new results

There has been extensive research on the online coloring of interval graphs. Kierstead and Trotter [\[19\]](#page--1-4) showed that there exists an online algorithm A such that $\chi_A(G^\prec)\leq 3\omega(G)-2$ for any online interval graph G^\prec and that no online algorithm can do better on the class of all interval graphs. Kierstead proved that every online interval graph $G^<$ satisfies $\chi_{FF}(G^<)\leq 40\omega(G)$. This upper bound was improved to 26ω(*G*) in [\[17\]](#page--1-5), before Pemmaraju et al. [\[22\]](#page--1-6) introduced a beautiful new technique to reduce the bound to 10ω(*G*). Brightwell et al. [\[3\]](#page--1-7), and later more elegantly, Narayanaswamy and Subhash Babu [\[21\]](#page--1-8), used easy modifications of this technique to get 8ω(*G*). Chrobak and Ślusarek [\[4\]](#page--1-9) proved that any First-Fit bounding function *f* for the class of interval graphs satisfies *f*(*k*) ≥ 4.4*k* − *b* for some constant *b*. Kierstead et al. [\[20\]](#page--1-10) have recently improved this to: for all $\varepsilon > 0$ there exists *b* such that for all $k, f(k) \geq (5 - \varepsilon)k - b$.

Gyárfás [\[10\]](#page--1-11), and independently Sumner [\[24\]](#page--1-12), conjectured that Forb(*T*) is χ-bounded for every tree *T* . Gyárfás et al. [\[11\]](#page--1-13) proved this for the special case that *T* has radius 2 and $\omega = 2$. Kierstead and Penrice [\[16\]](#page--1-14) proved the general result for radius 2 trees. Kierstead et al. [\[18\]](#page--1-15) showed that Forb(*T*) is online χ-bounded for radius 2 trees *T* . In particular, Forb(*SK*1,3) is online χ-bounded, where *SK*1,³ is the radius 2 tree obtained by subdividing each edge of *K*1,3. Since every bounded tolerance graph is a cocomparability graph, and no cocomparability graph induces *SK*1,3, the class of bounded tolerance graphs is online χ -bounded. However, the known bounding function is superexponential. It is an open question whether all tolerance graphs are cocomparability graphs. If true, then the class of tolerance graphs is online χ -bounded.

In [\[13\]](#page--1-16), Kierstead showed that cocomparability graphs are not First-Fit χ -bounded by constructing posets with width 2, whose cocomparability graphs have arbitrarily large Grundy number (and clique number 2). Hiraguchi [\[12\]](#page--1-17) showed that the dimension of a poset is at most its width, and so these posets are two dimensional. Hence their cocomparability graphs are permutation graphs. Golumbic and Monma [\[7\]](#page--1-0) showed that permutation graphs are bounded tolerance graphs. In fact, they can be represented by intervals so that $t_x = ||I_x||$ for all vertices *x*. Such a tolerance representation for a bounded tolerance graph with Grundy number 7 is shown in [Fig. 2.](#page--1-18) In the figure, the color of an interval (more precisely, of the vertex Download English Version:

<https://daneshyari.com/en/article/420108>

Download Persian Version:

<https://daneshyari.com/article/420108>

[Daneshyari.com](https://daneshyari.com/)