Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

First-Fit coloring of bounded tolerance graphs

H.A. Kierstead^{a,*}, Karin R. Saoub^b

^a Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA
^b Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA 24153, USA

ARTICLE INFO

Article history: Received 3 February 2009 Received in revised form 6 May 2010 Accepted 7 May 2010 Available online 11 June 2010

Keywords: First-Fit Grundy number Tolerance graph

ABSTRACT

Let G = (V, E) be a graph. A tolerance representation of G is a set $I = \{I_v : v \in V\}$ of intervals and a set $t = \{t_v : v \in V\}$ of nonnegative reals such that $xy \in E$ iff $I_x \cap I_y \neq \emptyset$ and $\|I_x \cap I_y\| \ge \min\{t_x, t_y\}$; in this case G is a tolerance graph. We refine this definition by saying that G is a p-tolerance graph if $t_v/|I_v| \le p$ for all $v \in V$.

A Grundy coloring g of G is a proper coloring of V with positive integers such that for every positive integer i, if i < g(v) then v has a neighbor u with g(u) = i. The Grundy number $\Gamma(G)$ of G is the maximum integer k such that G has a Grundy coloring using k colors. It is also called the First-Fit chromatic number.

For fixed $0 \le p < 1$ we prove that if *G* is a *p*-tolerance graph then, $\Gamma(G) = \Theta\left(\frac{\omega(G)}{1-p}\right)$,

and in particular, $\Gamma(G) \le 8 \left\lceil \frac{1}{1-p} \right\rceil \omega(G)$. Also, we show how restricting *p* forbids induced copies of $K_{s,s}$. Finally, we observe that there exist 1-tolerance graphs *G* with $\omega(G) = 2$ and arbitrarily large Grundy number.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the performance of the online coloring algorithm First-Fit on tolerance graphs. First, we review some notation and definitions. For an interval I = [a, b], let ||I|| denote the length b - a of I. For a graph G, denote its clique number by $\omega(G)$, its independence number by $\alpha(G)$ and its chromatic number by $\chi(G)$. We say that a graph class \mathcal{G} is χ -bounded if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{G}$. In this case f is called a *bounding function* for \mathcal{G} . For a graph H let Forb(H) denote the class of graphs that do not contain H as an induced subgraph.

1.1. Online and First-Fit coloring and Grundy numbers

An online graph G^{\prec} is a graph G together with an ordering \prec of its vertices. This ordering is called the *presentation* of G. Let G_i^{\prec} denote the online graph induced by the first i vertices of \prec . An online coloring algorithm is an algorithm \mathcal{A} that colors the vertices of G so that the color of the *i*th vertex v_i depends only on G_i^{\prec} . The number of colors used by \mathcal{A} on G^{\prec} is denoted by $\chi_{\mathcal{A}}(G^{\prec})$ and $\chi_{\mathcal{A}}(G)$ is the maximum of $\chi_{\mathcal{A}}(G^{\prec})$ over all possible orderings \prec . A class \mathcal{G} of graphs is online χ -bounded if there exist an online algorithm \mathcal{A} and a function f such that $\chi_{\mathcal{A}}(G^{\prec}) \leq f(\omega(G))$ for all graphs $G \in \mathcal{G}$ and all presentations \prec of G. In this case f is called an online *bounding function* for \mathcal{G} .

First-Fit (*FF*) is the online algorithm that colors the *i*th vertex v_i of an online graph G^{\prec} with the least positive integer that has not been used to color any of its neighbors in G_i^{\prec} . A class \mathcal{G} is First-Fit χ -bounded if there exists a function f such that

* Corresponding author. E-mail addresses: kierstead@quest.net, kierstead@asu.edu (H.A. Kierstead), saoub@roanoke.edu (K.R. Saoub).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2010.05.002

 $\chi_{FF}(G^{\prec}) \leq f(\omega(G))$ for all graphs $G \in \mathcal{G}$ and all presentations \prec of G. In this case f is called a First-Fit *bounding function* for \mathcal{G} . Finally, $\chi_{FF}(\mathcal{G}) = \max_{G \in \mathcal{G}} \chi_{FF}(G)$.

A Grundy coloring of a graph G = (V, E) is a proper coloring g of G with positive integers such that

$$\forall v \in V \ \forall k \in \mathbb{Z}^+ \quad (k < g(v) \Rightarrow \exists u \in N(v) \ g(u) = k). \tag{*}$$

The *Grundy number* $\Gamma(G)$ of *G* is the maximum integer *k* such that *G* has a Grundy coloring using the color *k*. An example of a Grundy coloring is shown above in Fig. 1. It is easy to see that $\Gamma(G) = \chi_{FF}(G)$: First-Fit produces a Grundy coloring, and every Grundy coloring can be realized by First-Fit, if the vertices are presented so that g(x) < g(y) implies that $x \prec y$. In proofs it is more convenient to consider Grundy number than First-Fit colorings, since then we can ignore presentations. We also define a *weak Grundy coloring* to be a possibly improper coloring that satisfies (*).

1.2. Interval and tolerance graphs

A graph G = (V, E) is an *interval graph* if for each vertex $x \in V$ there exists a closed interval $I_x = [L(x), R(x)]$ of **R** such that $xy \in E$ if and only if $I_x \cap I_y \neq \emptyset$. In this case the set $\pounds := \{I_v : v \in V\}$ is called an *interval representation* of G. If R(x) < L(y) we write $I_x < I_y$. Then \pounds is also an interval representation of the *interval order* defined on V by x < y iff $I_x < I_y$ and G is the cocomparability graph of this order.

Tolerance graphs were introduced by Golumbic and Monma [7] as a natural generalization of interval graphs. A graph G = (V, E) is a *tolerance graph* if for each vertex $x \in V$ there exists a closed interval $I_x = [L(x), R(x)]$ of **R** and a nonnegative real t_x such that $xy \in E$ if and only if $I_x \cap I_y \neq \emptyset$ and $||I_x \cap I_y|| \ge \min\{t_x, t_y\}$. In this case $\langle J, t \rangle$ is called a *tolerance representation* of *G*, where *t* maps $x \mapsto t_x$. It is useful for us to introduce the following classification of tolerance graphs. Define *G* to be a *p*-tolerance graph if it has a tolerance representation $\langle J, t \rangle$ such that $t_x / ||I_x|| \le p$ for all $x \in V$. Then interval graphs are 0-tolerance graphs. In the past, 1-tolerance graphs have been extensively studied under the name *bounded tolerance graphs* and $\frac{1}{2}$ -tolerance graphs, then *p* measures the degree of imprecision.

Let \mathcal{T}_p denote the class of *p*-tolerance graphs and $\mathcal{T}_{p,w}$ be the restriction of \mathcal{T}_p to graphs with clique size at most *w*. Golumbic and Monma [7] proved that bounded tolerance graphs are cocomparability graphs and Golumbic et al. [8] proved that all tolerance graphs are perfect. For further details the reader is referred to the excellent books [6] by Golumbic on algorithmic graph theory and [9] by Golumbic and Trenk on tolerance graphs.

1.3. Old and new results

There has been extensive research on the online coloring of interval graphs. Kierstead and Trotter [19] showed that there exists an online algorithm \mathcal{A} such that $\chi_{\mathcal{A}}(G^{\prec}) \leq 3\omega(G) - 2$ for any online interval graph G^{\prec} and that no online algorithm can do better on the class of all interval graphs. Kierstead proved that every online interval graph G^{\prec} satisfies $\chi_{FF}(G^{\prec}) \leq 40\omega(G)$. This upper bound was improved to $26\omega(G)$ in [17], before Pemmaraju et al. [22] introduced a beautiful new technique to reduce the bound to $10\omega(G)$. Brightwell et al. [3], and later more elegantly, Narayanaswamy and Subhash Babu [21], used easy modifications of this technique to get $8\omega(G)$. Chrobak and Ślusarek [4] proved that any First-Fit bounding function f for the class of interval graphs satisfies $f(k) \geq 4.4k - b$ for some constant b. Kierstead et al. [20] have recently improved this to: for all $\varepsilon > 0$ there exists b such that for all $k, f(k) \geq (5 - \varepsilon)k - b$.

Gyárfás [10], and independently Sumner [24], conjectured that Forb(*T*) is χ -bounded for every tree *T*. Gyárfás et al. [11] proved this for the special case that *T* has radius 2 and $\omega = 2$. Kierstead and Penrice [16] proved the general result for radius 2 trees. Kierstead et al. [18] showed that Forb(*T*) is online χ -bounded for radius 2 trees *T*. In particular, Forb(*SK*_{1,3}) is online χ -bounded, where *SK*_{1,3} is the radius 2 tree obtained by subdividing each edge of *K*_{1,3}. Since every bounded tolerance graph is a cocomparability graph, and no cocomparability graph induces *SK*_{1,3}, the class of bounded tolerance graphs is online χ -bounded. However, the known bounding function is superexponential. It is an open question whether all tolerance graphs are cocomparability graphs. If true, then the class of tolerance graphs is online χ -bounded.

In [13], Kierstead showed that cocomparability graphs are not First-Fit χ -bounded by constructing posets with width 2, whose cocomparability graphs have arbitrarily large Grundy number (and clique number 2). Hiraguchi [12] showed that the dimension of a poset is at most its width, and so these posets are two dimensional. Hence their cocomparability graphs are permutation graphs. Golumbic and Monma [7] showed that permutation graphs are bounded tolerance graphs. In fact, they can be represented by intervals so that $t_x = ||I_x||$ for all vertices x. Such a tolerance representation for a bounded tolerance graph with Grundy number 7 is shown in Fig. 2. In the figure, the color of an interval (more precisely, of the vertex

Download English Version:

https://daneshyari.com/en/article/420108

Download Persian Version:

https://daneshyari.com/article/420108

Daneshyari.com