Decompositions of graphs of functions and fast iterations of lookup tables ${ }^{\text {is }}$

Boaz Tsaban
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Received 9 October 2005; received in revised form 27 June 2006; accepted 29 June 2006
Available online 17 August 2006

Abstract

We show that every function f implemented as a lookup table can be implemented such that the computational complexity of evaluating $f^{m}(x)$ is small, independently of m and x. The implementation only increases the storage space by a small constant factor.

© 2006 Elsevier B.V. All rights reserved.
Keywords: Fast forward functions; Fast forward permutations; Cycle decomposition; Cycle structure

1. Introduction and motivation

According to Naor and Reingold [2], a function $f:\{0, \ldots, N-1\} \rightarrow\{0, \ldots, N-1\}$ is fast forward if for each natural number m which is polynomial in N, and each $x=0, \ldots, N-1$, the computational complexity of evaluating $f^{m}(x)$-the m th iterate of f at x-is small (polynomial in $\log N$). This is useful in simulations and cryptographic applications, and for the study of dynamic-theoretic properties of the function f.
Originally this notion was studied in the context of pseudorandomness, where N is very large-see [2,3,1]. Here we consider the remainder of the scale, where N is not too large, so that the function $f:\{0, \ldots, N-1\} \rightarrow\{0, \ldots, N-1\}$ is or can be implemented by a lookup table of size N. Implementations as lookup tables are standard for several reasons, e.g., in the case where the evaluation $f(x)$ is required to be efficient, or in the case that f is a random function, so that f has no shorter definition than just specifying its values for all possible inputs. We describe a simple way to implement a given function f such that it becomes fast forward. The implementation only increases the storage space by a small constant factor.

The case that f is a permutation is of special importance and is easier to treat. This is done in Section 2 . In Section 3 we treat the general case.

2. Making a permutation fast forward

We recall two definitions from [3].

[^0]Definition 1. Assume that f is a permutation on $\{0, \ldots, N-1\}$. The ordered cycle decomposition of f is the sequence $\left(C_{0}, \ldots, C_{\ell-1}\right)$ consisting of all (distinct) cycles of f, such that for each $i, j \in\{0, \ldots, \ell-1\}$ with $i<j$, $\min C_{i}<\min C_{j}$. The ordered cycle structure of f is the sequence $\left(\left|C_{0}\right|, \ldots,\left|C_{\ell-1}\right|\right)$.

The ordered cycle decomposition of f can be computed in time N : find C_{0}, the cycle of 0 . Then find C_{1}, the cycle of the first element not in C_{0}, etc. In particular, the ordered cycle structure of f can be computed in time N.

Definition 2. Assume that ($m_{0}, m_{1}, \ldots, m_{\ell-1}$) is the ordered cycle structure of a permutation f on $\{0, \ldots, N-1\}$. For each $i=0, \ldots, \ell-1$, let $s_{i}=m_{0}+\cdots+m_{i}$. The fast forward permutation coded by ($m_{0}, m_{1}, \ldots, m_{\ell-1}$) is the permutation π on $\{0, \ldots, N-1\}$ such that for each $x \in\{0, \ldots, N-1\}$,

$$
\pi(x)=s_{i}+\left(x-s_{i}+1 \bmod m_{i+1}\right) \quad \text { where } s_{i} \leqslant x<s_{i+1} .
$$

In other words, π is the permutation whose ordered cycle decomposition is

$$
\pi=(\underbrace{0 \ldots s_{0}-1}_{m_{0}})(\underbrace{s_{0} \ldots s_{1}-1}_{m_{1}})(\underbrace{s_{1} \ldots s_{2}-1}_{m_{2}}) \cdots(\underbrace{s_{\ell-2} \ldots N-1}_{m_{\ell-1}}) .
$$

The assignment $x \mapsto i(x)$ such that $s_{i(x)} \leqslant x<s_{i(x)+1}$ can be implemented (in time N) as a lookup table of size N. As

$$
\pi^{m}(x)=s_{i(x)}+\left(x-s_{i(x)}+m \bmod \left(s_{i(x)+1}-s_{i(x)}\right)\right)
$$

π is fast forward.
Coding 3. To code a given permutation f on $\{0, \ldots, N-1\}$ as a fast forward permutation, do the following.
(1) Compute the ordered cycle decomposition of f :

$$
f=(\underbrace{b_{0} \ldots b_{s_{0}-1}}_{m_{0}})(\underbrace{\left(b_{s_{0}} \ldots b_{s_{1}-1}\right.}_{m_{1}})(\underbrace{b_{s_{1}} \ldots b_{s_{2}-1}}_{m_{2}}) \cdots(\underbrace{b_{s_{\ell-2}} \ldots b_{N-1}}_{m_{\ell-1}}) .
$$

(2) Define a permutation σ on $\{0, \ldots, N-1\}$ by $\sigma(x)=b_{x}$ for each $x=0, \ldots, N-1$.
(3) Store in memory the following tables: σ, σ^{-1}, the list $s_{0}, \ldots, s_{\ell-1}$ (where $s_{k}=m_{0}+\cdots+m_{k}$ for each k), and the assignment $x \mapsto i(x)$.

Let π be the fast forward permutation coded by $\left(m_{0}, m_{1}, \ldots, m_{\ell-1}\right)$. Then

$$
f=\sigma \circ \pi \circ \sigma^{-1}
$$

For each m and $x, f^{m}(x)$ is equal to $\sigma\left(\pi^{m}\left(\sigma^{-1}(x)\right)\right)$, which is computed by five invocations of the stored lookup tables and five elementary arithmetic operations (addition, subtraction, or modular reduction). We therefore have the following.

Theorem 4. Every permutation f on $\{0, \ldots, N-1\}$ can be coded by four lookup tables of size N each, such that each evaluation $f^{m}(x)$ can be carried using five invocations of lookup tables and five elementary arithmetic operations, independently of the size of m.

Remark 5.

(1) For random permutations, $\ell \approx \log N$ and therefore the total amount of memory is about $3 N+\log N$.
(2) Instead of storing the assignment $x \mapsto i(x)$, we can compute it online. This is a search in an ordered list and takes $\log _{2}(\ell)$ in the worst case. For a typical permutation this is about $\log _{2}(\log (N))$ additional operations in the worst case (e.g., for $N=2^{32}$, this is about four additional operations per evaluation). This reduces the memory to $2 N+\log N$.

https://daneshyari.com/en/article/420128

Download Persian Version:
https://daneshyari.com/article/420128

Daneshyari.com

[^0]: ${ }^{4}$ Supported by the Koshland Fellowship.
 E-mail address: boaz.tsaban@weizmann.ac.il
 URL: http://www.cs.biu.ac.il/~ tsaban.

