Available online at www.sciencedirect.com

i i DISCRETE
ScienceDirect APPLIED
MATHEMATICS

ok

»- X ;’ AJi‘.
ELSEVIER Discrete Applied Mathematics 155 (2007) 386393

www.elsevier.com/locate/dam

Decompositions of graphs of functions and fast iterations of lookup
tables™

Boaz Tsaban
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Received 9 October 2005; received in revised form 27 June 2006; accepted 29 June 2006
Available online 17 August 2006

Abstract

We show that every function f implemented as a lookup table can be implemented such that the computational complexity of
evaluating ™ (x) is small, independently of m and x. The implementation only increases the storage space by a small constant
factor.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Fast forward functions; Fast forward permutations; Cycle decomposition; Cycle structure

1. Introduction and motivation

According to Naor and Reingold [2], a function f : {0,..., N — 1} — {0, ..., N — 1} is fast forward if for each
natural number m which is polynomial in N, and each x =0, ..., N — 1, the computational complexity of evaluating
f™(x)—the mth iterate of f at x—is small (polynomial in log N). This is useful in simulations and cryptographic
applications, and for the study of dynamic-theoretic properties of the function f.

Originally this notion was studied in the context of pseudorandomness, where N is very large—see [2,3,1]. Here we
consider the remainder of the scale, where N is not too large, so that the function f : {0,...,N—1} — {0,..., N —1}
is or can be implemented by a lookup table of size N. Implementations as lookup tables are standard for several reasons,
e.g., in the case where the evaluation f(x) is required to be efficient, or in the case that fis a random function, so that f
has no shorter definition than just specifying its values for all possible inputs. We describe a simple way to implement
a given function f such that it becomes fast forward. The implementation only increases the storage space by a small
constant factor.

The case that fis a permutation is of special importance and is easier to treat. This is done in Section 2. In Section 3
we treat the general case.

2. Making a permutation fast forward

We recall two definitions from [3].

* Supported by the Koshland Fellowship.
E-mail address: boaz.tsaban @weizmann.ac.il
URL: http://www.cs.biu.ac.il/~ tsaban.

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.06.006


http://www.elsevier.com/locate/dam
mailto:boaz.tsaban@weizmann.ac.il
http://www.cs.biu.ac.il/~tsaban

B. Tsaban / Discrete Applied Mathematics 155 (2007) 386 —393 387

Definition 1. Assume that f is a permutation on {0, ..., N — 1}. The ordered cycle decomposition of f is the se-
quence (Cp, ..., Cy—1) consisting of all (distinct) cycles of f, such that for each i, j € {0,...,¢ — 1} with i < j,
min C; < min C;. The ordered cycle structure of fis the sequence (|Col, ..., [C¢—1]).

The ordered cycle decomposition of fcan be computed in time N: find Co, the cycle of 0. Then find C1, the cycle of
the first element not in Cy, etc. In particular, the ordered cycle structure of f can be computed in time N.

Definition 2. Assume that (mg, m1, ..., m¢—_1) is the ordered cycle structure of a permutation fon {0, ..., N — 1}.
Foreachi =0,...,¢ — 1,lets; =mg + - - - + m;. The fast forward permutation coded by (mqo, my, ..., mg—_1) is the
permutation w on {0, ..., N — 1} such that foreach x € {0, ..., N — 1},

n(x)=s; + (x —s; + Imodm;y1) wheres; <x <sji].

In other words, = is the permutation whose ordered cycle decomposition is

n=@0...50 —D(sg...51 = D(sy...0—=1)---(s5¢—2...N —1).
—_—

mo mi ma me—j

The assignment x — i(x) such that s;(y) <X <5;(x)+1 can be implemented (in time N) as a lookup table of size N.
As

" (X) = Sie) + (¢ — Six) +mmod (5i(x)+1 — Si(x)))s
7 is fast forward.

Coding 3. To code a given permutation fon {0, ..., N — 1} as a fast forward permutation, do the following.

(1) Compute the ordered cycle decomposition of f:

f = (b() .. -bso—l)(bso .. -bsl—l)(bsl .. ~b32—1) to (bse,Q .. 'bN—l)-

mo mj m2 me—1

(2) Define a permutation g on {0, ..., N — 1} by o(x) = b, foreachx =0, ..., N — 1.
(3) Store in memory the following tables: o, o1 the list s, ..., Se—1 (where s =mg + - - - + my, for each k), and the
assignment x — i(x).

Let 7 be the fast forward permutation coded by (mq, my, ..., me—1). Then

f=0omo ol
For each m and x, f™(x) is equal to a(7 (¢! (x))), which is computed by five invocations of the stored lookup
tables and five elementary arithmetic operations (addition, subtraction, or modular reduction). We therefore have the
following.

Theorem 4. Every permutation fon {0, ..., N — 1} can be coded by four lookup tables of size N each, such that each
evaluation f™(x) can be carried using five invocations of lookup tables and five elementary arithmetic operations,
independently of the size of m.

Remark 5.

(1) For random permutations, £ &~ log N and therefore the total amount of memory is about 3N + log N.

(2) Instead of storing the assignment x +—> i(x), we can compute it online. This is a search in an ordered list and
takes log, (£) in the worst case. For a typical permutation this is about log, (log(/N)) additional operations in the
worst case (e.g., for N = 232, this is about four additional operations per evaluation). This reduces the memory to
2N +log N.



Download English Version:

https://daneshyari.com/en/article/420128

Download Persian Version:

https://daneshyari.com/article/420128

Daneshyari.com


https://daneshyari.com/en/article/420128
https://daneshyari.com/article/420128
https://daneshyari.com/

