
Discrete Applied Mathematics 155 (2007) 386–393
www.elsevier.com/locate/dam

Decompositions of graphs of functions and fast iterations of lookup
tables�

Boaz Tsaban
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Received 9 October 2005; received in revised form 27 June 2006; accepted 29 June 2006
Available online 17 August 2006

Abstract

We show that every function f implemented as a lookup table can be implemented such that the computational complexity of
evaluating f m(x) is small, independently of m and x. The implementation only increases the storage space by a small constant
factor.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Fast forward functions; Fast forward permutations; Cycle decomposition; Cycle structure

1. Introduction and motivation

According to Naor and Reingold [2], a function f : {0, . . . , N − 1} → {0, . . . , N − 1} is fast forward if for each
natural number m which is polynomial in N, and each x = 0, . . . , N − 1, the computational complexity of evaluating
f m(x)—the mth iterate of f at x—is small (polynomial in log N). This is useful in simulations and cryptographic
applications, and for the study of dynamic-theoretic properties of the function f.

Originally this notion was studied in the context of pseudorandomness, where N is very large—see [2,3,1]. Here we
consider the remainder of the scale, where N is not too large, so that the function f : {0, . . . , N −1} → {0, . . . , N −1}
is or can be implemented by a lookup table of size N. Implementations as lookup tables are standard for several reasons,
e.g., in the case where the evaluation f (x) is required to be efficient, or in the case that f is a random function, so that f
has no shorter definition than just specifying its values for all possible inputs. We describe a simple way to implement
a given function f such that it becomes fast forward. The implementation only increases the storage space by a small
constant factor.

The case that f is a permutation is of special importance and is easier to treat. This is done in Section 2. In Section 3
we treat the general case.

2. Making a permutation fast forward

We recall two definitions from [3].

� Supported by the Koshland Fellowship.
E-mail address: boaz.tsaban@weizmann.ac.il
URL: http://www.cs.biu.ac.il/∼ tsaban.

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.06.006

http://www.elsevier.com/locate/dam
mailto:boaz.tsaban@weizmann.ac.il
http://www.cs.biu.ac.il/~tsaban

B. Tsaban / Discrete Applied Mathematics 155 (2007) 386–393 387

Definition 1. Assume that f is a permutation on {0, . . . , N − 1}. The ordered cycle decomposition of f is the se-
quence (C0, . . . , C�−1) consisting of all (distinct) cycles of f, such that for each i, j ∈ {0, . . . , � − 1} with i < j ,
min Ci < min Cj . The ordered cycle structure of f is the sequence (|C0|, . . . , |C�−1|).

The ordered cycle decomposition of f can be computed in time N: find C0, the cycle of 0. Then find C1, the cycle of
the first element not in C0, etc. In particular, the ordered cycle structure of f can be computed in time N.

Definition 2. Assume that (m0, m1, . . . , m�−1) is the ordered cycle structure of a permutation f on {0, . . . , N − 1}.
For each i = 0, . . . , � − 1, let si = m0 + · · · + mi . The fast forward permutation coded by (m0, m1, . . . , m�−1) is the
permutation � on {0, . . . , N − 1} such that for each x ∈ {0, . . . , N − 1},

�(x) = si + (x − si + 1 mod mi+1) where si �x < si+1.

In other words, � is the permutation whose ordered cycle decomposition is

� = (0 . . . s0 − 1︸ ︷︷ ︸
m0

)(s0 . . . s1 − 1︸ ︷︷ ︸
m1

)(s1 . . . s2 − 1︸ ︷︷ ︸
m2

) · · · (s�−2 . . . N − 1︸ ︷︷ ︸
m�−1

).

The assignment x �→ i(x) such that si(x) �x < si(x)+1 can be implemented (in time N) as a lookup table of size N.
As

�m(x) = si(x) + (x − si(x) + m mod (si(x)+1 − si(x))),

� is fast forward.

Coding 3. To code a given permutation f on {0, . . . , N − 1} as a fast forward permutation, do the following.

(1) Compute the ordered cycle decomposition of f:

f = (b0 . . . bs0−1︸ ︷︷ ︸
m0

)(bs0 . . . bs1−1︸ ︷︷ ︸
m1

)(bs1 . . . bs2−1︸ ︷︷ ︸
m2

) · · · (bs�−2 . . . bN−1︸ ︷︷ ︸
m�−1

).

(2) Define a permutation � on {0, . . . , N − 1} by �(x) = bx for each x = 0, . . . , N − 1.
(3) Store in memory the following tables: �, �−1, the list s0, . . . , s�−1 (where sk = m0 + · · · + mk for each k), and the

assignment x �→ i(x).

Let � be the fast forward permutation coded by (m0, m1, . . . , m�−1). Then

f = � ◦ � ◦ �−1.

For each m and x, f m(x) is equal to �(�m(�−1(x))), which is computed by five invocations of the stored lookup
tables and five elementary arithmetic operations (addition, subtraction, or modular reduction). We therefore have the
following.

Theorem 4. Every permutation f on {0, . . . , N − 1} can be coded by four lookup tables of size N each, such that each
evaluation f m(x) can be carried using five invocations of lookup tables and five elementary arithmetic operations,
independently of the size of m.

Remark 5.

(1) For random permutations, � ≈ log N and therefore the total amount of memory is about 3N + log N .
(2) Instead of storing the assignment x �→ i(x), we can compute it online. This is a search in an ordered list and

takes log2(�) in the worst case. For a typical permutation this is about log2(log(N)) additional operations in the
worst case (e.g., for N = 232, this is about four additional operations per evaluation). This reduces the memory to
2N + log N .

Download	English	Version:

https://daneshyari.com/en/article/420128

Download	Persian	Version:

https://daneshyari.com/article/420128

Daneshyari.com

https://daneshyari.com/en/article/420128
https://daneshyari.com/article/420128
https://daneshyari.com/

