
Discrete Applied Mathematics 160 (2012) 685–696

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Graphs of separability at most 2
Ferdinando Cicalese a, Martin Milanič b,∗

a Dipartimento di Informatica, University of Salerno, Fisciano, Italy
b University of Primorska, FAMNIT and PINT, Koper, Slovenia

a r t i c l e i n f o

Article history:
Received 8 August 2010
Received in revised form 11 January 2011
Accepted 17 January 2011
Available online 15 February 2011

Keywords:
Separability
Hereditary class
Separating clique
Decomposition
Induced subgraph
Induced minor
Parsimony Haplotyping

a b s t r a c t

We introduce graphs of separability at most k as graphs in which every two non-adjacent
vertices are separated by a set of at most k other vertices. Graphs of separability at most k
arise in connection with the Parsimony Haplotyping problem from computational biology.
For k ∈ {0, 1}, the only connected graphs of separability at most k are complete graphs and
block graphs, respectively. For k ≥ 3, graphs of separability at most k form a rich class of
graphs containing all graphs of maximum degree k.

We prove several characterizations of graphs of separability atmost 2, which generalize
complete graphs, cycles and trees. The main result is that every connected graph of
separability atmost 2 can be constructed from complete graphs and cycles by pasting along
vertices or edges, and vice versa, every graph constructed this way is of separability at
most 2. The structure theorem has nice algorithmic implications—some of which cannot be
extended to graphs of higher separability—however certain optimization problems remain
intractable on graphs of separability 2. We then characterize graphs of separability at
most 2 in terms of minimal forbidden induced subgraphs and minimal forbidden induced
minors. Finally, we discuss the possibilities of extending these results to graphs of higher
separability.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a graph. The separability sepG(x, y) of two distinct non-adjacent vertices x, y in G is defined as the
minimum cardinality of a set S ⊆ V such that x and y are in different components of G − S. We define the separability of
a graph G, denoted by sep(G), as the maximum over all separabilities of non-adjacent vertex pairs (unless G is complete, in
which case we define its separability to be 0). Notice that by definition, graphs of separability at most k are precisely the
graphs in which every two non-adjacent vertices can be separated by removing a set of at most k other vertices. Hence, by
Menger’s theorem, the separability of G is equal to themaximum number of internally vertex-disjoint paths connecting two
non-adjacent vertices.

Graphs of separability at most k arise naturally in connection with the Parsimony Haplotyping problem from
computational biology. (This connection is detailed in Section 6.) We are interested in characterizations and structural
properties of graphs of separability at most k, for small values of k. It can be easily seen that for every k, the set Gk of graphs
of separability at most k is closed under vertex deletions; hence, with every graph G ∈ Gk, the class Gk contains all induced
subgraphs of G. Such graph classes are called hereditary. This family of graph classes is of particular interest, since hereditary
(and only hereditary) classes admit a uniform description in terms of forbidden induced subgraphs. For a set F of graphs,
we say that a graph G is F -free if it does not contain an induced subgraph isomorphic to a member of F . Given a hereditary
class G, denote by F the set of all graphs G with the property that G ∉ G but H ∈ G for every proper induced subgraph
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H of G. The set F is said to be the set of forbidden induced subgraphs for G, and G is precisely the class of F -free graphs.
The set F can be either finite or infinite, and many interesting classes of graphs can be characterized as being F -free for
some family F . Such characterizations can be useful for establishing inclusion relations among hereditary graph classes,
and were obtained for, among others, even-signable graphs [13], universally signable graphs [14,17], and perfect graphs in
the famous Strong Perfect Graph Theorem conjectured by Berge in 1961 [3] and proved by Chudnovsky et al. in 2006 [8].

There are also theorems that elucidate the structure of graphs in a certain hereditary class by showing that every graph in
the class either belongs to one of a few basic classes (inwhich case it has a prescribed and relatively transparent structure) or
has one of a set of prescribed structural faults, alongwhich it can be decomposed in a usefulway. Several such decomposition
results were obtained in recent years, including those for Meyniel graphs [6], perfect graphs [8], cap-free graphs [12],
universally signable graphs [14,17], even-hole-free graphs [15], graphswithout odd holes, parachutes or properwheels [11],
odd-hole-free graphs [16] and (diamond, even-hole)-free graphs [29]. A few results of a stronger type are also known, in
which the decomposition can also be reversed in the sense that a graph is in the class if and only if it can be constructed
by gluing basic graphs along the decompositions prescribed. Such composition results are known for example for chordal
graphs [23], claw-free graphs [9], graphs with no cycle with a unique chord [36] and bull-free graphs [7]. Decomposition
results often have nice algorithmic consequences and provide means for obtaining bounds on certain graph parameters in
terms of others.

We initiate the study of the structural properties of graphs of separability at most k, for small values of k. For k ∈ {0, 1},
graphs of separability at most k are completely understood: graphs of separability 0 are precisely the disjoint unions of
complete graphs, and graphs of separability at most 1 are precisely the block graphs, that is, graphs every block of which is
complete. From this description, a forbidden induced subgraph characterization is easy to obtain, and it is clear how to build
such graphs from the complete graphs. For k ≥ 3, graphs of separability at most k form a rich class of graphs containing
all graphs of maximum degree k, as well as all pairwise k-separable graphs (defined by Miller [32]). The main focus of this
paper is on the class of graphs of separability at most 2. These graphs form a common generalization of complete graphs,
cycles and trees, and more generally, block graphs, cacti (graphs in which every edge belongs to at most one cycle), forests,
and block-cactus graphs (graphs in which every block induces either a complete graph or a cycle).
Our results.We show in Section 2 that graphs of separability atmost 2 are precisely the graphs that can be built fromcomplete
graphs and cycles by an iterative application of the disjoint union operation and of pasting two disjoint graphs along a vertex
or along an edge. In Section 3 we examine the unboundedness of the tree-width and the clique-width, when restricted to
graphs of separability atmost 2.We show that the structure theorem leads to polynomial time solvability of several generally
NP-hard problems, in this class. The structure theorem also implies the existence of an efficient recognition algorithm
of graphs of separability at most 2. Interestingly, some well-known hard problems remain intractable when restricted to
graphs of separability at most 2. In Section 4, we characterize the graphs of separability at most 2 in terms of minimal
forbidden induced subgraphs and minimal forbidden induced minors; these characterizations imply that every graph of
separability at most 2 is universally signable. In Section 5 we summarize the results for graphs of separability at most k, and
in Section 6 we explain how graphs of separability at most k arise in connection with the Parsimony Haplotyping problem
from computational biology. Section 7 concludes the paper with some open problems.

This paper is the full version of the conference paper [10]. It includes, in addition to all proofs, a separate section devoted
to graphs of separability at most k and a description of the connection between graphs of separability at most k and the
Parsimony Haplotyping problem.
Notation and definitions. All graphs considered are finite, simple and undirected. As usual, Cn and Kn denote the cycle and
the complete graph on n vertices, respectively, and Ks,t the complete bipartite graph with parts of size s and t . For a vertex
x ∈ V (G), we denote by N(x) the neighborhood of x, i.e., the set of vertices adjacent to x. The degree of x is the size of its
neighborhood. For a set A ⊆ V (G), we denote by N(A) the set ∪a∈A{u ∈ N(a) : u ∉ A}, and for sets A, B ⊆ V (G) we define
NB(A) := N(A) ∩ B. Unless stated otherwise, m and n will denote the number of edges and vertices of the graph under
consideration. A graph G is chordal if every cycle in G on at least four vertices has a chord (an edge connecting two non-
consecutive vertices of the cycle). A clique in a graph G is a set of pairwise adjacent vertices. A separating clique in a graph G
is a clique C in G whose removal disconnects G. An independent set in a graph G is a set of pairwise non-adjacent vertices.
A cut-vertex of a connected graph G is a vertex whose removal disconnects the graph. A 2-connected graph is a connected
graph on at least three vertices and with no cut-vertices. A 2-connected component of a graph G is a maximal subgraph of
G that is 2-connected. A block of a connected graph G is either a 2-connected component of G or an edge whose removal
separates the graph. We say that a graph G is obtained from two graphs G1 and G2 by pasting along a k-clique, and denote
this by G = G1 ⊕k G2, if for some r ≤ k there exist two r-cliques K1 = {x1, . . . , xr} ⊆ V (G1) and K2 = {y1, . . . , yr} ⊆ V (G2)
such that G is isomorphic to the graph obtained from the disjoint union of G1 and G2 by identifying each xi with yi, for all
i = 1, . . . , r . In particular, if k = 0, then G1 ⊕k G2 is the disjoint union of G1 and G2. For terms left undefined, we refer the
reader to [22].

2. A structure theorem for graphs of separability at most 2

Complete graphs and cycles are graphs of separability at most 2. The main result of this section is the following theorem,
showing that complete graphs and cycles form the main building blocks for every graph of separability at most 2.
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