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a b s t r a c t

Codes of length n2 and dimension 2n − 1 or 2n − 2 over the field Fp, for any prime p,
that can be obtained from designs associated with the complete bipartite graph Kn,n and its
line graph, the lattice graph, are examined. The parameters of the codes for all primes are
obtained and PD-sets are found for full permutation decoding for all integers n ≥ 3.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Codes obtained from an adjacency matrix of the line graph of a graph are closely related to codes from an incidence
matrix of the original graph, and are, in fact, subcodes of this in the binary case. The codes from the incidence matrix of a
graph, in case the graph has some regularity, have been found, in many cases, to have rank either the number v of vertices,
or v − 1, in particular the latter in the binary case: see [6,7,13]. Furthermore, their minimum weight is often the valency
of the graph, and the minimum words simply the scalar multiples of the rows of the matrix. Thus it makes sense to look
at these codes in conjunction with the codes from the adjacency matrix of the line graph, and codes associated with this
adjacency matrix. In addition, binary codes from some line graphs have been found to be good candidates for permutation
decoding: see [6,12,16,14,15,22].
In this paperwe consider the lattice graph,where, for anyn, the lattice graph is defined to be the line graphof the complete

bipartite graph Kn,n. It is a strongly regular graph on v = n2 vertices. The binary codes from the span of adjacency matrices
of lattice graphs have been examined by various authors: see [3,4,9,23], andwith a view to permutation decoding in [16,22].
We extend these results now to p-ary codes for all primes p; the p-rank of these and related graphs was examined in [20].
Taking the complete bipartite graph Kn,n to have vertices from two disjoint sets A = {a1, . . . , an} and B = {b1, . . . , bn}, the
vertices of the lattice graph Ln are the n2 pairs (ai, bj) with (ai, bj) and (ak, bm) adjacent if i = k or j = m. If An denotes an
adjacency matrix for Ln then Bn = J − I − An, where J is the all-one and I the identity n2 × n2 matrix, will be an adjacency
matrix for the graph L̃n on the same vertices with adjacency defined by (ai, bj) adjacent to (ak, bm) if i 6= k, j 6= m. We
examine the neighbourhood designs and p-ary codes, for any prime p, from An, An+ I, Bn, Bn+ I and show that all the codes
are inside the code or its dual obtained from an incidence matrixMn for the graph Kn,n, noting thatMTnMn = An + 2I . Thus
the codes from the row span of Mn, and some subcodes of codimension 1, are the ones that we examine for permutation
decoding. Note that An + I and Bn + I are adjacency matrices for the graphs LRn and L̃

R
n obtained from Ln and L̃n, respectively,

by including all loops, and thus referred to as reflexive graphs.
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We summarize our results below in a theorem; the specific results relating to the codes from Ln, L̃n, LRn, L̃
R
n are given as

propositions and lemmas in the following sections. The notation is as explained in the paragraph above.

Theorem 1. Let Cn be the p-ary code of an incidence matrix Mn for the complete bipartite graph Kn,n where p is a prime and
n ≥ 3. The vertex set of Kn,n is A ∪ B, where A = {a1, . . . , an}, B = {b1, . . . , bn} and the edges are the pairs (ai, bj) where
ai ∈ A, bj ∈ B. Then Cn is a [n2, 2n− 1, n]p code with information set

In = {(ai, bn) | 1 ≤ i ≤ n} ∪ {(an, bi) | 1 ≤ i ≤ n− 1}.

For n ≥ 3, the minimum words are the scalar multiples of the rows ri of Mn, and Aut(Cn) = Sn o S2, where Aut(Cn) denotes
the automorphism group of Cn. The set

S = {(tn,i, tn,i) | 1 ≤ i ≤ n},

of elements of Sn × Sn, where ti,j = (i, j) ∈ Sn is a transposition and tk,k = (k, k) is the identity of Sn, is a PD-set of size n for Cn
using In.
Let En = 〈ri − rj | ri, rj rows of Mn〉. Then for n ≥ 3, En is an [n2, 2n − 2, 2n − 2]p code and the minimum words are the

scalar multiples of the ri − rj. Further, I∗n = In \ {(a1, bn)} is an information set, and

S∗ = {(tn,i, tn,j) | 1 ≤ i, j ≤ n},

a PD-set of size n2 for En using I∗n .
The p-ary codes from Ln, L̃n, LRn, L̃

R
n are either Fn

2
p , 〈ȷ〉

⊥, C⊥n , E
⊥
n , Cn or En.

We note that the binary code from the lattice graph is En: see Result 2 in Section 2.
The proof of the theorem follows from propositions and lemmas in the following sections. The full details about the codes

from Ln, L̃n, LRn, L̃
R
n are in Proposition 8. Background definitions are given in Section 2, and notation for the graphs, designs

and codes that we consider here is given in Section 3. Computations leading to these results were all donewithMagma [5,2].

2. Background and terminology

Notation for designs and codes is as in [1, Chapters 1,2]. An incidence structureD = (P ,B,J), with point set P , block
set B and incidence J is a t-(v, k, λ) design, if |P | = v, every block B ∈ B is incident with precisely k points, and every
t distinct points are together incident with precisely λ blocks. The design is symmetric if it has the same number of points
and blocks. The code CF (D) of the designD over the finite field F is the space spanned by the incidence vectors of the blocks
over F . If Q is any subset of P , then we will denote the incidence vector of Q by vQ , and if Q = {P} where P ∈ P , then we
will write vP instead of v{P}. Thus CF (D) =

〈
vB | B ∈ B

〉
, and is a subspace of FP , the full vector space of functions fromP to

F . For any w ∈ FP and P ∈ P , w(P) denotes the value of w at P . If F = Fp then the p-rank of the design, written rankp(D),
is the dimension of its code CF (D), which we usually write as Cp(D).
The codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C of length n, dimension k, and

minimum weight d, where the weight, wt(v), of a vector v is the number of non-zero coordinate entries. A generator matrix
for C is a k× nmatrix made up of a basis for C , and the dual code C⊥ is the orthogonal under the standard inner product (, ),
i.e. C⊥ = {v ∈ F n|(v, c) = 0 for all c ∈ C}. A code is self-orthogonal if C ⊆ C⊥. A self-orthogonal binary code is doubly-even
if all the codewords have weight divisible by 4. If C = Cp(D), where D is a design, then C ∩ C⊥ is the hull of D at p, or
simply the hull ofD or C if p andD are clear from the context. A check matrix for C is a generator matrix for C⊥. The all-one
vector will be denoted by ȷ, and is the vector with all entries equal to 1. We call two linear codes isomorphic if they can be
obtained from one another by permuting the coordinate positions. An automorphism of a code C is an isomorphism from C to
C . The automorphism group will be denoted by Aut(C). Any code is isomorphic to a code with generator matrix in so-called
standard form, i.e. the form [Ik | A]; a check matrix then is given by [−AT | In−k]. The first k coordinates in the standard form
are the information symbols and the last n− k coordinates are the check symbols.
The graphs, Γ = (V , E) with vertex set V and edge set E, discussed here are undirected with no loops, apart from the

case where all loops are included, in which case the graph is called reflexive. The order of Γ = (V , E) is |V |. A graph is regular
if all the vertices have the same valency. An adjacency matrix A of a graph of order |V | = n is an n× nmatrix with entries aij
such that aij = 1 if vertices vi and vj are adjacent, and aij = 0 otherwise. An incidence matrix of Γ is an n× |E|matrix Bwith
bi,j = 1 if the vertex labelled by i is on the edge labelled by j, and bi,j = 0 otherwise. If Γ is regular with valency k, then the
1-(|E|, k, 2) design with incidence matrix B is called the incidence design of Γ . The neighbourhood design of a regular graph
is the 1-design formed by taking the points to be the vertices of the graph and the blocks to be the sets of neighbours of a
vertex, for each vertex. The line graph of a graph Γ = (V , E) is the graph L(Γ ) with E as vertex set and where adjacency is
defined so that e and f in E, as vertices, are adjacent in L(Γ ) if e and f as edges of Γ share a vertex in Γ . A strongly regular
graphΓ of type (n, k, λ, µ) is a regular graph on n = |V | vertices, with valency kwhich is such that any two adjacent vertices
are together adjacent to λ vertices and any two non-adjacent vertices are together adjacent to µ vertices.
The complete bipartite graph Kn,n on 2n vertices, A ∪ B, where A = {a1, . . . , an}, B = {b1, . . . , bn}, with n2 edges, has for

its line graph, the lattice graph Ln, which has vertex set the set of ordered pairs {(ai, bj) | 1 ≤ i, j ≤ n}, where two pairs are
adjacent if and only if they have a common coordinate. Ln is a strongly regular graph of type (n2, 2(n− 1), n− 2, 2).



Download English Version:

https://daneshyari.com/en/article/420275

Download Persian Version:

https://daneshyari.com/article/420275

Daneshyari.com

https://daneshyari.com/en/article/420275
https://daneshyari.com/article/420275
https://daneshyari.com

