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a b s t r a c t

For a positive integer k, a graph G is equitably k-colorable if there is a mapping f : V (G)→
{1, 2, . . . , k} such that f (x) 6= f (y) whenever xy ∈ E(G) and ||f −1(i)| − |f −1(j)|| ≤ 1 for
1 ≤ i < j ≤ k. The equitable chromatic number of a graph G, denoted by χ=(G), is the
minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a
graph G, denoted by χ∗

=
(G), is theminimum t such that G is equitably k-colorable for k ≥ t .

The current paper studies equitable chromatic numbers of Kronecker products of graphs.
In particular, we give exact values or upper bounds on χ=(G× H) and χ∗=(G× H)when G
and H are complete graphs, bipartite graphs, paths or cycles.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected, loopless andwithoutmultiple edges. For a positive integer k, let
[k] = {1, 2, . . . , k}. A (proper) k-coloring of a graphG is amapping f : V (G)→ [k] such that f (x) 6= f (y)whenever xy ∈ E(G).
We call the set f −1(i) = {x ∈ V (G) : f (x) = i} a color class for each i ∈ [k]. Notice that each color class is an independent
set, i.e., a pairwise non-adjacent vertex set. A graph is k-colorable if it has a k-coloring. The chromatic number of G, denoted
by χ(G), is equal to min{k : G is k-colorable}. An equitable k-coloring of G is a k-coloring for which any two color classes
differ in size by at most one, or equivalently, each color class is of size b|V (G)|/kc or d|V (G)|/ke. If G has n vertices, then the
color classes of an equitable k-coloring have sizes b(n+ t − 1)/kc for t ∈ [k]. If we write n = kq+ r with 0 ≤ r < k, then
exactly r (respectively, k− r) color classes have size q+ 1 (respectively, q). The equitable chromatic number of G, denoted by
χ=(G), is equal to min{k : G is equitablyk-colorable}, and the equitable chromatic threshold of G, denoted by χ∗=(G), is equal
to min{t : G is equitably k-colorable for k ≥ t}. The Kronecker (or cross, direct, tensor, weak tensor or categorical) product of
graphs G and H is the graph G× H with vertex set V (G)× V (H) and edge set {(x, y)(x′, y′) : xx′ ∈ E(G) and yy′ ∈ E(H)}.
The concept of equitable colorability was first introduced by Meyer [25]. His motivation came from the problem of

assigning one of the six days of the work week to each garbage collection route. For other applications such as scheduling
and constructing timetables, please see [1,12,13,16,27,30,31]. We refer the reader to a survey given by Lih [23] for pertinent
concepts and results.
In 1964, Erdős [7] conjectured that any graph G with maximum degree ∆(G) ≤ k has an equitable (k + 1)-coloring,

or equivalently, χ∗
=
(G) ≤ ∆(G) + 1. This conjecture was proved in 1970 by Hajnal and Szemerédi [9] with a long and

complicated proof. Mydlarz and Szemerédi [26] found a polynomial algorithm for such a coloring. Recently, Kierstead
and Kostochka [14] gave a short proof of the theorem, and presented another polynomial algorithm for such a coloring.
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They [15] proved an even stronger result that every graph satisfying d(x) + d(y) ≤ 2k + 1 for every edge xy has an
equitable (k + 1)-coloring. Brooks’ type results are conjectured: Equitable Coloring Conjecture [25] χ=(G) ≤ ∆(G), and
Equitable ∆-Coloring Conjecture [4] χ∗

=
(G) ≤ ∆(G) for G 6∈ {Kn, C2n+1, K2n+1,2n+1}. Exact values of equitable chromatic

numbers and equitable thresholds of trees [3] and complete multipartite graphs [2,22] were determined. Chen et al. [5]
and Furmańczyk [8] investigated equitable colorability of square and cross products of graphs. Equitable coloring has been
extensively studied in the literature, see [3,4,17–21,23,24,27,28,33–36].
Among the known results, we are most interested in those on graph products. Notice that graph products are engrossing

that the purpose is not to construct a complex graph, but to decompose it into simple graphs. To study the relation of pa-
rameters between the product and its factors is helpful to analyze the structure of complicated graphs, see [10,11,29,32,37].
This paper is organized as follows. Section 2 is a review for equitable colorings on Kronecker products of graphs related

to our results in this paper. Sections 3–6 establish exact values and upper bounds on equitable chromatic numbers and
thresholds of Kronecker products of complete graphs, bipartite graphs, a long path or cycle with a complete graph, and
P2, P3, C3 or C4 with a complete graph, respectively.

2. Preliminaries

For integer n ≥ 1, the n-path Pn is the graph with vertex set {x1, x2, . . . , xn} and edge set {x1x2, x2x3, . . . , xn−1xn}. For
integer n ≥ 3, the n-cycle Cn is the graph with vertex set {x1, x2, . . . , xn} and edge set {x1x2, x2x3, . . . , xn−1xn, xnx1}. For
positive integers m and n, the complete bipartite graph Km,n is the graph with vertex set {y1, y2, . . . , ym, z1, z2, . . . , zn} and
edge set {yizj : i ∈ [m] and j ∈ [n]}.
From the definitions, it is evident that χ(G) ≤ χ=(G) ≤ χ∗=(G) for any graph G. In general, the inequalities can be strict.

As examples,

χ(K1,n) = 2 < χ=(K1,n) = χ∗
=
(K1,n) =

⌈
n+ 2
2

⌉
for n ≥ 3,

χ(Kn,n) = χ=(Kn,n) = 2 < χ∗
=
(Kn,n) = n+ 1 for odd n ≥ 3,

χ(K3,3,6) = 3 < χ=(K3,3,6) = 4 < χ∗
=
(K3,3,6) = 7.

Hedetniemi [10] has a famous conjecture for chromatic numbers, which is still open.

Conjecture 1 ([10]). χ(G× H) = min{χ(G), χ(H)} for any two graphs G and H.

While it is easy to check that χ(G × H) ≤ min{χ(G), χ(H)}, the inequality χ=(G × H) ≤ min{χ=(G), χ=(H)} is false
in general. For instance, Furmańczyk [8] gave that χ=(P3 × P3) = 3 > 2 = min{χ=(P3), χ=(P3)}. On the other hand, Chen
et al. [5] gave the following result.

Lemma 2 ([5]). χ=(G× H) ≤ min{|V (G)|, |V (H)|} for any two graphs G and H.

By Lemma2andDuffus–Sands–Woodrow’s result [6] thatχ(Km× Kn) = min{m, n}, Chen et al. [5] got thatχ=(Km× Kn) =
min{m, n}. They also showed that χ=(Cm × Cn) = χ∗=(Cm × Cn) = 2 ifmn is even, and 3 otherwise; and χ=(Kn × Kn,n−1) =
χ∗
=
(Kn × Kn,n−1) = n. Furmańczyk [8] established that χ=(Km × Pn) = 2 if m is even or n = 2, and 3 otherwise; and

χ=(K1,m × K1,n) = min{m, n} + 1.
In general, min{|V (G)|, |V (H)|} is not an upper bound of χ∗

=
(G × H). In fact, Chen et al. [5] gave a counterexample that

K2 × Kn is not equitably (n + 1)/2-colorable if n > 1 and n ≡ 1(mod 4). Also, χ∗
=
(G × H) ≤ max{χ∗

=
(G), χ∗

=
(H)} is

false in general. Two counterexamples given in [5] and [8], respectively, are χ∗
=
(K2,3 × K2,3) = 3 > 2 = χ∗

=
(K2,3) and

χ∗
=
(P3 × P3) = 3 > 2 = max{χ∗=(P3), χ

∗
=
(P3)}. On the other hand, Chen et al. [5] gave the following conjecture.

Conjecture 3 ([5]). χ∗
=
(G× H) ≤ max{|V (G)|, |V (H)|} for any two graphs G and H.

Notice that we only have to verify the conjecture for Km × Kn, and we show that it is true in Section 3.

3. Product of complete graphs

We first study equitable chromatic thresholds of Kronecker products of complete graphs. Our result gives a positive
answer to Conjecture 3. We in fact give a slightly better upper bound.

Theorem 4. For positive integers m ≤ n, we have χ∗
=
(Km × Kn) ≤

⌈ mn
m+1

⌉
.

Proof. We shall prove that Km× Kn is equitably k-colorable for k ≥
⌈ mn
m+1

⌉
by induction onm+ n. The assertion is clear for

m = n = 1, as K1 × K1 = K1. Suppose the assertion is true form′ + n′ < m+ n. Assumemn = kq+ r , where 0 ≤ r < k. Let
σt =

⌊mn+t−1
k

⌋
for 1 ≤ t ≤ k. Then σi = q for 1 ≤ i ≤ k− r and σj = q+ 1 for k− r + 1 ≤ j ≤ k. We consider three cases.

Case 1. k ≥ m + n and r ≥ m. In this case, σj = q + 1 for at least m indices j’s and q + 1 = mn−r
k + 1 ≤

m(n−1)
k + 1 ≤

m
m+n (n − 1) + 1 < n. Let n

′
= n − q − 1 and k′ = k − m. Then n′ > 0 and k′ ≥ n ≥ max{m, n′} ≥

⌈
mn′

min{m,n′}+1

⌉
.
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