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a b s t r a c t

Consider the problem of finding an integer matrix that satisfies given constraints on its
leading partial row and column sums. For the case in which the specified constraints are
merely bounds on each such sum, an integer linear programming formulation is shown to
have a totally unimodular constraintmatrix. This proves the polynomial-time solvability of
this case. In another version of the problem, one seeks a zero–one matrix with prescribed
row and column sums, subject to certain near-equality constraints, namely, that all leading
partial row (respectively, column) sums up through a given column (respectively, row) are
within unity of each other. This case admits a polynomial reduction to the preceding case,
and an equivalent reformulation as a maximum-flow problem. The results are developed
in a context that relates these two problems to consistent matrix rounding.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given positive integer vectors r ∈ Zm and c ∈ Zn, the well-known theorem of Gale and Ryser [13,18] provides necessary
and sufficient conditions for the existence of anm×n zero–onematrix X with row sums equaling the entries in r and column
sums equaling the entries in c. In this paper we consider two related problems in which additional constraints are imposed
on the leading partial row and column sums of X .
The first of these problems is to find a matrix X ∈ Zm×n satisfying the conditions

x−ij ≤ xij ≤ x
+

ij , for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (1)

c−ij ≤
i∑
i′=1

xi′j ≤ c+ij , for j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, (2)

r−ij ≤
j∑
j′=1

xij′ ≤ r+ij , for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (3)

where X−, X+, C−, C+, R−, and R+ are givenm× n integer matrices. We shall refer to this as the simple-bound problem. The
problem treated by the Gale–Ryser theorem is covered by the sub-case in which X− = 0 and the bounds (2), (3) amount
to equality constraints on row and column sums of the full matrix. This sub-case also includes various problems arising in
discrete tomography [9,14], such as the problem of finding a zero–one matrix with prescribed line sums and a prescribed
zero block [6,8]. Further motivation for the study of (1)–(3) arises through consideration of the problem described next.
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The second problem that we consider will be referred to as the near-equality problem. It consists of finding a zero–one
matrix that, in addition to having prescribed row and column sums, also satisfies ‘‘near-equality’’ constraints on its leading
partial row and column sums. Specifically, given r ∈ Zm and c ∈ Zn, we wish to find a matrix X ∈ Zm×n satisfying the
conditions

0 ≤ xij ≤ 1, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (4)
n∑
j=1

xij = ri, for i ∈ {1, . . . ,m}, (5)

m∑
i=1

xij = cj, for j ∈ {1, . . . , n}, (6)∣∣∣∣∣ j∑
j′=1

(
xij′ − xi′j′

)∣∣∣∣∣ ≤ 1, for i, i′ ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (7)

∣∣∣∣∣ i∑
i′=1

(
xi′j − xi′j′

)∣∣∣∣∣ ≤ 1, for j, j′ ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, (8)

or show that no such matrix exists. The constraints (4)–(6) are again of Gale–Ryser type and are therefore well understood.
Note that (7) constrains the row sums for the leftmostm× j submatrix, while (8) constrains the topmost i×n submatrix. As
we show in Section 3, however, these additional constraints do complicatematters: the full system (4)–(8)may be infeasible
even though the simpler system (4)–(6) is feasible.
The near-equality conditions (7), (8) typically arise from a need for balance or uniformity in the distribution of ones

throughout the matrix, so that blocks of similar size have a similar number of unit entries. For example, such a balancing
requirement arises in connection with embedding grids in hypercubes [4,7], which in turn is motivated by the design of
parallel computing architectures. The specific formulation given by (4)–(8) has been proposed in a particular approach [17]
to such embeddings. The problem is also related to scheduling [5,20], in which case the rows and columns of the matrix
correspond to tasks and stations (or times) at which they can be performed. The near-equality constraints reflect the goal
of maintaining a balance across one or both dimensions. This can improve robustness against unforeseen machine failures
or changes in demand for tasks, or it can provide a just-in-time schedule for sequential tasks. In both the embedding and
scheduling applications, the precise order of the elements of the column-sum vector c may not be specified in advance, so
the problem considered here might viewed as a subproblem to be solved repeatedly for various re-orderings of c.
The purpose of this paper is to demonstrate that the simple-bound and near-equality problems can be solved in poly-

nomial time using methods from linear programming and/or network optimization. The key steps in this demonstration
consist of building the following links: (a) the near-equality problem can be transformed into a special case of the simple-
bound problem, (b) the simple-bound problem is closely related to consistentmatrix rounding, and (c) constrained rounding
in integer linear programming is related to total unimodularity and integrality of vertices in the simple-bound problem.
In the next section, we reformulate the simple-bound problem (1)–(3) as an integer linear program and invoke a result on

matrix rounding to demonstrate that the constraintmatrix is totally unimodular. This proves the polynomial-time solvability
of the problem using, for example, linear programming methods. In Section 3, we derive valid inequalities for the near-
equality problem (4)–(8). These yield a complete linear characterization, in the form of (1)–(3), of the polytope of integer
solutions to (4)–(8). In Section 4, we use these valid inequalities to recast the near-equality problem in terms of finding a
maximal flow in a network that is closely related to one introduced by Knuth [16] for matrix rounding. The final section
(Section 5) shows that Knuth’s network approach to rounding also provides an alternative, more elementary proof of the
main integrality theorem of Section 2. In this way, the theory of matrix rounding and our two problems comes full circle
and leads to multiple perspectives on all three.

2. Matrix rounding and integrality of the simple-bound problem

A key result in this paper is that every vertex of the polytope defined by the simple-bound problem (1)–(3) is integral. This
yields a polynomial-time method for deciding whether (1)–(3) has an integer solution, because a vertex of such a polytope
(or a certificate that the polytope is empty) can be found in polynomial time [19]. We provide two different proofs of the
claimed integrality: one is given below and the other is delayed to Section 5.
In this section, we use the following result on consistent matrix rounding, which strengthens the classical result of

Bacharach [3]. It was first proved by Knuth [16], although he stated the conclusion in a weaker form concerning only the full
column and row sums, rather than the leading partial sums. Doerr et al. [11] later stated the result in its full generality.

Theorem 1. For all X̂ ∈ [0, 1]m×n, a rounding X ∈ {0, 1}m×n of X̂ exists such that
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