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a b s t r a c t

A polyhedral embedding in a surface is one in which any two faces have boundaries that
are either disjoint or simply connected. In a cubic (3-regular) graph this is equivalent to
the dual being a simple graph. In 1968, Grünbaum conjectured that every cubic graph
with a polyhedral embedding in an orientable surface is 3-edge-colorable. For the sphere,
this is equivalent to the Four-Color Theorem, but we have disproved the conjecture in the
general form. In this paper we extend this result and show that if we restrict our attention
to a class of cubic graphs with a polyhedral embedding in an orientable surface, then the
computational complexity of the 3-edge-coloring problem and its approximation does not
improve.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A k-edge-coloring of a graph is an assignment of numbers 1, . . . , k to its edges such that any two incident edges receive
different colors. By Tait [17], a cubic (3-regular) planar graph is 3-edge-colorable if and only if its geometric dual is
4-colorable. Thus the dual form of the Four-Color Theorem (see [1]) is that every 2-edge-connected planar cubic graph
has a 3-edge-coloring.
Denote by C the class of cubic graphs. From the classical result of Vizing [19], it follows that there is a polynomial time

algorithm which finds a 4-edge-coloring for any graph of C (see also [14]). On the other hand, by Holyer [8], the problem of
deciding whether a graph from C is 3-edge-colorable is NP-complete.
For G ∈ C, define by σ(G) the minimum number such that there exists a 4-edge-coloring of Gwith σ(G) edges assigned

the fourth color. Define by ρ(G) the minimum number of vertices that must be deleted from G to have the resulting graph
be 3-edge-colorable. Clearly, σ(G) = ρ(G) = 0 if and only if G is 3-edge-colorable. In [15] it was proved that the problems
of deciding whether ρ(G), σ (G) ∈ [0, n1−ε] are NP-complete for G ∈ C. Thus, it is an NP-hard problem to approximate ρ(G)
and σ(G), G ∈ C, with an error O(n1−ε).
An embedding of a cubic graph in a surface is called polyhedral if it is cellular (each face is homeomorphic to an open disk)

and its dual is a simple graph (i.e., any two faces have at most one edge in common and the boundary of each face is a simple
circuit; see, e.g., [2]). Let P denote the class of cubic graphs with a polyhedral embedding in an orientable surface (see,
e.g., [3,6] for a formal definition of orientable surfaces). During a conference in 1968, Grünbaum [7] presented a conjecture
that every graph from P is 3-edge-colorable. By the results of Appel and Haken [1] and Tait [17], the conjecture holds true
for the sphere. A positive solution of this conjecture would generalize the dual form of the Four-Color Theorem to every
orientable surface. We disproved the general form of the conjecture in [9,10].
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In this paper we continue with the study begun in [9,10] and show that 3-edge-coloring problems have the same
computational complexity on classesP andC. We generalize the results from [8,15] and prove that the problem of deciding
whether a graph from P is 3-edge-colorable is NP-complete and the problems of deciding whether ρ(G), σ (G) ∈ [0, n1−ε]
are NP-complete for G ∈ P .

2. Networks, flows and superposition

If G is a graph, then V (G) and E(G) denote the vertex and edge sets of G, respectively. If v is a vertex of G, then ωG(v)
denotes the set of edges having one end v and the other end from V (G) \ {v}.
By a networkwemean a couple (G,U)where G is a graph and U ⊆ V (G). By a nowhere-zero Z2 × Z2-flow ϕ in (G,U)we

mean a mapping ϕ : E(G) → Z2 × Z2 such that ϕ(e) 6= 0 for each edge e of G and ∂ϕ(v) =
∑
e∈ωG(v)

ϕ(e) = 0 for each
vertex v ∈ V (G) \ U . By a nowhere-zero Z2 × Z2-flow in a graph Gwe mean a nowhere-zero Z2 × Z2-flow in (G,∅).
If G is a graph, then denote by ρ4(G) the minimum number n such that there exists U ⊆ V (G), |U| = n, such that (G,U)

has a nowhere-zero Z2 × Z2-flow (see [11]). In [12], we proved the following statement.

Lemma 1. For every loopless cubic graph G, ρ4(G) = ρ(G) = σ(G).
A graph is called cyclically k-edge-connected if deleting fewer than k edges does not result in a graph having at least
two components containing cycles. Cubic graphs can have edge-connectivity at most 3, but arbitrarily large cyclic edge-
connectivity. Denote by Ck and Pk the classes of graphs from C and P that are cyclically k-edge-connected, respectively.
Nontrivial cubic graphs without a 3-edge-coloring are called snarks. By nontrivial we mean cyclically 4-edge-connected

and with girth (length of the shortest circuit) at least 5. The best known snark is the Petersen graph. Snarks present an
important class of graphs, because the smallest counterexamples to many conjectures about graphs must be among them
(see, e.g., [11,13]).
By a 4-snark we mean a network or a graph without a nowhere-zero Z2 × Z2-flow. It is well known that nowhere-zero

Z2 × Z2-flows in a cubic graph G correspond to 3-edge-colorings of G by nonzero elements of the group Z2 × Z2 (see,
e.g., [11,13]). Thus snarks form a proper subclass of 4-snarks. In [11,13] we introduced a general method for constructing
4-snarks. It is based on the following two steps.
Suppose v is a vertex of a graph G and G′ arises from G by the following process. Replace v by a graph Hv so that each

edge e of G having one end v now has one end from Hv . If e is a loop and has both ends equal to v, then both ends of e will
now be from Hv . Thus constructed, G′ is called a vertex superposition of G.
Suppose e is an edge of Gwith ends u and v, and G′ arises from G by the following process. Replace e by a graph He having

at least two vertices, i.e., we delete e; pick two distinct vertices u′, v′ of He; and identify u′ with u and v′ with v. Then G′ is
called an edge superposition of G. Furthermore, if He is a 4-snark, then G′ is called a 4-strong edge superposition of G.
We say that a graph G′ is a (4-strong) superposition of G if G′ arises from G after finitely many vertex and (4-strong) edge

superpositions. In [11, Lemma 4.4], we proved that a 4-strong superposition of a 4-snark is a 4-snark. We use a stronger
form of this statement, proved in [11, Proposition 8.1, items (b) and (c)].

Lemma 2. If G′ is a 4-strong superposition of G, then ρ4(G′) ≥ ρ4(G).

3. Reduction

In Fig. 1 there is depicted a snark G22 constructed in [9,10]. It is drawn in a plane with two handles. (A handle in a plane
or a surface arises after deleting an open rectangle and identifying the opposite segments so that the orientations of the
arrows, as indicated in Fig. 1, are preserved.) The boundary of the infinite face f0 is a circuit C , which is composed from two
paths P1 and P2 with ends u and v. By [10, items (4) and (5)], we have:
(1) any two faces fi and fj, i, j ∈ {1, . . . , 8}, share at most one edge,
(2) the face f0 shares exactly two edges with each fi, i ∈ {1, . . . , 8}, so P1 and P2 each contain exactly one of these edges.

In Fig. 2 is indicated a labeling of edges of G22 such that the edges incident with u or v have the same color and the edges
incident with any other vertex have three different colors.

Lemma 3. Suppose G is a connected cubic graph of order n and let d ≥ 0 be an integer. Then we can construct in polynomial
time a graph Gd ∈ P5 of order 372n+ 2d such that ρ4(Gd) ≥ ρ4(G) and ρ4(Gd) = 0 if ρ4(G) = 0.
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