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a b s t r a c t

The single row facility layout problem (SRFLP) is the problem of arranging n departments
with given lengths on a straight line so as tominimize the total weighted distance between
all department pairs. We present a polyhedral study of the triplet formulation of the
SRFLP introduced by Amaral [A.R.S. Amaral, A new lower bound for the single row facility
layout problem, Discrete AppliedMathematics 157 (1) (2009) 183–190]. For any number of
departments n, we prove that the dimension of the triplet polytope is n(n−1)(n−2)/3 (this
is also true for the projections of this polytope presented by Amaral). We then prove that
several valid inequalities presented by Amaral for this polytope are facet-defining. These
results provide theoretical support for the fact that the linear program solved over these
valid inequalities gives the optimal solution for all instances studied by Amaral.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In single row facility layout problem (SRFLP), the goal is to arrange n departments on a straight line. We are given the
following data: an n× n symmetric matrix C = [cij], where cij denotes the average daily traffic between two departments i
and j, and the length li of each department i ∈ N = {1, . . . , n}. The distance zij between two departments is considered to
be the distance between their centroids. The objective is to find the permutation π that minimizes the total communication
cost, i.e.

min
π

n−1∑
i=1

n∑
j=i+1

cijzπij .

The SRFLP has several applications involving arranging rooms on a corridor, machines in a manufacturing system, and
books on a shelf [9,15,16]. The minimum linear arrangement problem (MLAP) was proven to be NP-hard in [8]. The SRFLP is
a generalization of MLAP and so is also NP-hard. Numerous heuristic solution approaches have been proposed for SRFLP
(e.g. see [9,12,17,14]).
Several exact solution techniques have also been proposed including branch and bound algorithms [16], dynamic pro-

gramming [15,11], nonlinear programming [10], and linear mixed integer programming [1,2,13]. Anjos et al. [5] and Anjos
and Vanelli [6] provided lower bounds on the optimal cost of SRFLP using semidefinite programming (SDP) relaxations.
Anjos and Yen [7] computed near optimal solutions for instances with up to 100 facilities using a new SDP relaxation. Ama-
ral and Letchford [4] conducted a polyhedral study on the distance polytope formulation of SRFLP and developed several
classes of valid inequalities. They achieved quick bounds for SRFLP using LP relaxations based on these valid inequalities.
They are comparable to the bounds achieved in [5].
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Amaral [3] presented an alternate formulation of the SRFLP, herein referred to as the triplet formulation, and introduced a
set of valid inequalities for it. It is shown in [3] that the linear program solved over these valid inequalities yields the optimal
solution for several classical SRFLP instances of sizes n = 5 to n = 30. These problem instances are from [1,2,9,10,13,16].
The results in [3] are comparable to the results of [6] which are based on SDP relaxation with cutting planes added.
The fact that the LP relaxation over the valid inequalities of [3] gives the optimal solution to so many instances suggests

that these valid inequalities are quite strong. In this paper, we conduct a polyhedral study of the triplet polytope, i.e. the
convex hull of feasible integer points for the triplet formulation. We prove that almost all valid inequalities introduced
in [3] are indeed facet-defining for the triplet polytope. More specifically, we first show that the three polytopes (triplet
polytope and its two projections defined in [3]) are of dimension n(n − 1)(n − 2)/3. After establishing the dimension of
these polytopes, we then prove the aforementioned facet-defining properties.
The paper is organized as follows: Section 2 briefly reviews the triplet polytope, its projections, and the valid inequalities

developed for them in [3]. In Section 3 we prove that these polytopes are of dimension n(n− 1)(n− 2)/3. In Section 4 we
prove the facet-defining properties of valid inequalities of [3], and we conclude in Section 5 with a few remarks.

2. Triplet polytope, its projections and valid inequalities

In the triplet formulation for the SRFLP [3], a binary vector ζ ∈ {0, 1}n(n−1)(n−2) is used to represent a permutation of the
departments in N . Each element of ζ is identified by a triplet subscript ijk, where i, j, k ∈ N are distinct, and

ζijk =

{
1 if department k lies between departments i and j
0 otherwise.

Throughout the paper, all the department indices used in the subscript of a single variable, coefficient, or set are assumed
to be distinct and we refrain from writing this in each case. We define

P =
{
ζ ∈ {0, 1}n(n−1)(n−2) : ζ represents a permutation of 1, . . . , n

}
,

and refer to the convex hull of P , i.e. conv(P), as the triplet polytope. Based on this formulation, the objective function of
SRFLP can be written as

min
n−1∑
i=1

n∑
j=i+1

cij

(
1
2
(li + lj)+

n∑
k6=i, k6=j

lkζijk

)
.

In [3] the following valid inequalities are presented for P:

0 ≤ ζijk ≤ 1 i, j, k ∈ N (1)

ζijk + ζikj + ζjki = 1 i, j, k ∈ N (2)

ζijd + ζjkd − ζikd ≥ 0 i, j, k, d ∈ N (3)

ζijd + ζjkd + ζikd ≤ 2 i, j, k, d ∈ N. (4)

Two projections of P are also introduced in [3]. We briefly review them here. It is clear that for any ζ ∈ P

ζijk = ζjik 1 ≤ i < j ≤ n. (5)

Using this identity, P can be projected onto the space {0, 1}n
′

, where n′ = n(n−1)(n−2)/2.We refer to this projection as P1.
The projection of a vector ζ ∈ P will be a vector λ ∈ P1 ⊆ {0, 1}n

′

with elements λijk such that λijk = ζijk for i, j, k ∈ N, i < j.
So the valid inequalities (1)–(4) can also be projected yielding the following inequalities for P1. Observe that (8)–(10) are
obtained from projection of (3).

0 ≤ λijk ≤ 1 i, j, k ∈ N, i < j (6)

λijk + λikj + λjki = 1 i, j, k ∈ N, i < j < k (7)

−λijd + λjkd + λikd ≥ 0 i, j, k, d ∈ N, i < j < k (8)

λijd + λjkd − λikd ≥ 0 i, j, k, d ∈ N, i < j < k (9)

λijd − λjkd + λikd ≥ 0 i, j, k, d ∈ N, i < j < k (10)

λijd + λjkd + λikd ≤ 2 i, j, k, d ∈ N, i < j < k. (11)

Amaral [3] also introduces a more complicated set of valid inequalities for conv(P1) as follows: for a positive even integer
β ≤ n, consider the set of distinct indices S = {it : t = 1, . . . , β} ⊆ {1, . . . , n} and d ∈ S. Let (S1, S2) be a partition of S \ {d}
such that |S1| = β2. Then, the inequality∑

p,q∈S1:p<q

λpqd +
∑

p,q∈S2:p<q

λpqd ≤
∑

p∈Sh, q∈S{1,2}\h:h=1,2, p<q

λpqd (12)

is valid for conv(P1) [3]. Inequalities (8)–(10) are special cases of (12) for β = 4, as noted in [3].
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