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1. Introduction

The art gallery problem is to determine the number of guards that are sufficient to cover or see every point in the interior
of an art gallery. An art gallery can be viewed as a polygon P with or without holes with a total of n vertices and guards as
points in P. Any point z € P is said to be visible from a guard g if the line segment joining z and g does not intersect the
exterior of P. Usually the guards may be placed anywhere inside P. If the guards are restricted to vertices of P, we call them
vertex guards. If there is no restriction, the guards are referred as point guards. Point and vertex guards are also referred as
stationary guards. If the guards are mobile, i.e., able to patrol along a segment inside P, they are called mobile guards. If the
mobile guards are restricted to edges of P, they are called edge guards.

The art gallery problem was first posed by Victor Klee for stationary guards (see [24]). Chvatal [9] proved that a
simple polygon P needs at most [n/3] stationary guards. Fisk [18] later gave a simple proof of this result using coloring
technique, and based on his proof, Avis and Toussaint [3] developed an O(n log n) time algorithm for positioning guards in
P.O'Rourke [35] showed that P needs at most | n/4| mobile guards. For edge guards, | n/4] edge guards seem to be sufficient
for guarding P, except for a few polygons (see [42]).

For a simple orthogonal polygon P, i.e., the edges of P are horizontal or vertical, Kahn et al. [26] proved that P needs at
most | n/4] stationary guards. O'Rourke [34] later gave an alternative proof for this result. These proofs use the partition of
P into convex quadrilaterals before |n/4] guards are placed in P. Note that a convex quadrilaterization of P can be obtained
by algorithms of Edelsbrunner, O’'Rourke and Welzl [12], Lubiw [32], Sack [38], and Sack and Toussaint [39]. Aggarwal [1]

showed that P needs at most L3T§4J mobile guards. This bound also holds for edge guards as shown by Bjorling-Sachs [6].

For a polygon P with h holes, O'Rourke [36] showed that P needs at most L%J vertex guards. Hoffmann, Kaufmann
and Kriegel [23] and Bjorling-Sachs and Souvaine [7] proved independently that P can always be guarded with (”%"] point
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guards. Bjorling-Sachs and Souvaine also gave an O(n?) time algorithm for positioning the guards. There is no tight bound
known on the number of mobile guards required to guard P. Since [%1 point guards are sufficient to guard P, the bound
naturally holds for mobile guards as well. To guard an orthogonal polygon P with h holes, Gyori, Hoffmann, Kriegel and
Shermer [22] proved that L%;HJ mobile guards are always sufficient to guard P. For survey of art gallery theorems and
algorithms, see Ghosh [20], O'Rourke [36], Shermer [41] and Urrutia [42].

The minimum guard problem is to find the minimum number of guards that can see every point in the interior of a
polygon. O'Rourke and Supowit [37] showed that the minimum vertex, point and edge guard problems in polygons with
holes are NP-hard. Even in the case of polygons without holes, Lee and Lin [30] showed that the minimum vertex, point and
edge guard problems are NP-hard. The minimum vertex and point guard problems are also NP-hard for simple orthogonal
polygons as shown by Katz and Rpoisman [27] and Schuchardt and Hecker [40].

In this paper, we present approximation algorithms for minimum vertex and edge guard problems for polygons with
or without holes. The approximation algorithms partition the polygonal region into convex components and construct
sets consisting of these convex components. Then the algorithms use an approximation algorithm for the minimum set-
covering problem on these constructed sets to compute the solution for the minimum vertex and edge guard problems. For
simple polygons, approximation algorithms for both problems run in O(n*) time and yield solutions that can be at most
O(log n) times the optimal solution. For polygons with holes, approximation algorithms for both problems give the same
approximation ratio of O(log n), but the algorithms take O(n>) time.

It may be noted that approximation algorithms presented in preliminary versions of this paper run in O(n> log n) time
for polygons with or without holes. The improvement in the running time of approximation algorithms is due to the
improvement in the upper bound on the number of convex components in the convex partition of a polygon. There is no
change in the method of transforming art gallery problems into set cover problems for computing vertex or edge guards in
both types of polygons. For the last two decades, this is the only known technique for transforming these four art gallery
problems leading to efficient approximation algorithms in terms of worst-case running times and approximation bounds.

Recently, Efrat and Har-Peled [13] presented randomized approximation algorithms for the minimum vertex guard
problem in polygons. For simple polygons P, the randomized approximation algorithm runs in O(ncgpt log® n) expected time
and the approximation ratio is O(log ¢opr), Where cqp¢ is the number of vertices in the optimal solution. In the worst case,
Copt €an be a fraction of n. For polygons P with h holes, the randomized approximation algorithm runs in O(nhcgptpolylog n)
expected time and the approximation ratio is O(log nlog(cop: log n)). Note that their randomized approximation algorithms
do not always guarantee solutions and the quality of approximation is correct with high probability. No other approximation
algorithm (deterministic or randomized) is known for the minimum vertex or edge guard problem in polygons. However,
for special classes of polygons, there are approximation algorithms for the minimum point guard problem [33]. Also, there
are approximation algorithms for the minimum vertex and point guard problems in 1.5-dimensional and 2.5-dimensional
terrains [5,11,14,16,21,27,28].

In the next section, we present approximation algorithms for the minimum vertex guard problem. In Section 3, we
present approximation algorithms for the minimum edge guard problem. In Section 4, we conclude the paper with a few
remarks.

2. Approximation algorithms for vertex guards

Assume that vertices of the given polygon P are labeled vq, v, ..., v,. Let VP(P, z) denote the set of all points of P that
are visible from a point z € P.Ifz is a vertex of P (say, v;), then VP (P, v;) is called fan (say, F;) and v; is called the fan vertex of
F;. Otherwise, VP (P, z) is called the visibility polygon of P from z. Since the region of P that can be seen by a vertex guard is a
fan, the vertex guard problem of P can be view as a polygon decomposition problem in which pieces of the decomposition
are fans.

It appears that if the entire boundary of P is visible from vertex guards, then the guards can also see every point in the
interior of P. In Fig. 1(a), vertices v7, vy and vq7 together can see the entire boundary of P, but the shaded region is not visible
from any of them. This establishes that vertex guards must be chosen in such a way so that all boundary points as well as
all internal points of P are visible from the chosen guards. In our approximation algorithms, the region of P is decomposed
into a set of convex pieces and each piece lies at least in one of the chosen fans so that the entire region of P is covered.

It seems natural to restrict convex pieces in a polygon to be bounded by extensions of polygonal edges. Feng and
Pavlidis [17] argued that this is a very natural restriction for polygonal decomposition problems in syntactic pattern
recognition. In Fig. 1(b), three fans with fan vertices v1, v4 and v, are necessary to cover the polygon if only edge extensions
are allowed, whereas two fans with fan vertices v; and v; suffice if boundaries of convex pieces are bounded by segments
passing through any two vertices of the polygon. So, the polygonal region is decomposed into convex pieces where every
component is bounded by segments that contains two vertices of the polygon.

A convex region ¢ C P is said to be a convex component of P if there is no other convex region b of P, where ¢ C b, such
that b can be divided by a line segment passing through two vertices of P. For the vertex guard problem, this restriction
turns out to be a true restriction, as shown in the following lemma.

Lemma 2.1. Every convex component of P is either totally visible or totally not visible from a vertex of P.
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