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machines have non-simultaneous availability times and tasks have arbitrary release times
and due dates. Also, the versatility of our approach makes it possible to generalize all
known classical criteria of optimality. Under these stipulations we show that the problem
of optimal scheduling of sparse tree-like instances can be solved in polynomial time.

Keywords: . . . .
Hypergraph coloring However, if we admlt dense instances then the problem becomes NP-hard, even if there
Dedicated machines are only two machines.

Multiprocessor scheduling © 2009 Elsevier B.V. All rights reserved.

NP-completeness

1. Introduction

In recent years a number of new approaches to the problem of parallel computer systems has been proposed. One of
them is scheduling of multiprocessor task systems [4]. According to this model any task may require for its processing more
than one processor at a time. There are two main classes of problems in multiprocessor task scheduling. In the first class of
problems, it is assumed that the number of simultaneously required processors is important [2,11] and each task requires
any fixed subset of processors whose cardinality is equal to the prescribed number. In the second class of multiprocessor
scheduling problems, the set of simultaneously required processors is assumed to be important [1,3,9,10]. In this case either
a certain fixed set of processors, or a family of processor sets on which the task can be executed is given. This paper deals
with the problem of scheduling tasks assigned to a fixed set of processors.

Since the problem of scheduling 2-processor tasks is NP-hard subject to all classical optimality criteria, in this paper we
are concerned with the special case in which the duration of every task is the same. We will call such tasks unit execution
time (UET) tasks. Consequently, all data are assumed to be positive integers. Later on we will see that such a restricted
version, although remaining NP-hard for some instances in dense systems, does allow for polynomial-time algorithms in
numerous special cases of sparse systems.

The third important assumption concerns availability constraints. Namely, we assume that the availability of tasks is
restricted and, in addition, some machines are available only in certain intervals called time windows. Time windows may
appear due to computer breakdowns or maintenance periods. Moreover, in any multitasking computer system and in hard
real-time systems in particular, urgent tasks have high priority and are pre-scheduled in certain time intervals, thus creating
multiple time windows of availability. Scheduling in time windows was considered in e.g. [1,2,5,6].
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Fig. 1. Example (a) problem instance (b) scheduling hypergraph (c) Gantt diagram.

The rest of the paper is organized as follows. In Section 2 we set up the problem more formally and model it as a cost
list edge-coloring (CLEC) problem. Section 3 is devoted to the case when two tasks sharing pairwise at most one machine
constitute a hypertree. We show that our problem can be solved efficiently by a tree coloring technique. In Section 4 we
generalize this approach to the case when besides the previous tasks there are O(1) additional multiprocessor tasks.

In the second part of the paper we consider the case where any pair of tasks can share an arbitrary number of processors.
In particular, we show that the scheduling problem is NP-hard even if the system consists of 2 machines. Since the proof is
rather complicated, we postpone it to Section 5 of the paper. The paper is concluded with a description of how the procedure
developed in Section 4 can be used to meet the most common criteria of scheduling.

2. Mathematical model

Classical scheduling theory provides various criteria of scheduling like Cpax, Lmax, Tmax, F, 2 w;C; and many others. All of
them can be reduced to the cost list scheduling model which is presented in this section. Let ] = {J1, ]2, ..., Jm} be a set of
tasks which can be executed on a set of processors M = {M1, M>, ..., M}. All processors are distinct, and they can execute
only one specified task at a time. Each task J; requires the simultaneous use of a nonempty set fix; £ M of processors for its
execution. All tasks are independent, nonpreemptable, and of the same length. For the sake of simplicity we may assume that
execution time of J;,i.e.p; = 1,foreachi = 1, ..., m. Every processor can work on not more than one task at the same time.
Time is divided into unit length slots numbered with successive integers. Tasks have availability constraints prespecified by
lists L(J;) € N (where N is the set of nonnegative integers) of available time slots in which J; can be executed. With each task
we associate a function fj, (x) which assigns to each x € L(J;) the cost of executing J; if it is executed in time slot x. Our aim is
to find a schedule with minimum total cost.

Our problem can be described using three-field notation as P|win, p; = 1, fix;|crit, where win stands for the fact that
availability constraints are imposed on tasks. By the word crit we mean any of the criteria commonly used in classical
scheduling theory.

The cost list scheduling problem can be modeled as the cost list edge-coloring of a hypergraph. Let H = (V,E) be a
hypergraph. V. = V(H) is the set of vertices and E = E(H) is a multiset of nonempty subsets of V called edges. A d-edge
e is an edge that contains exactly d vertices. ¥ (e) = |e| = d denotes the dimension of edge e and ¥ (H) = maX.ct ¥ (e)
is the dimension of hypergraph H. The degree A(v) of a vertex v € V is the number of edges in which v occurs. A(H) =
max,cy A(v) is the degree of H. The neighborhood N (e) of edge e is the set of all edges in H that share at least one vertex
with e. N(H) is the cardinality of the maximal neighborhood of an edge in H.

A proper edge-coloring of hypergraph H with k colors is a function ¢ : E(H) — {1, ..., k} such that no two edges which
share a vertex have the same color (number). A proper list edge-coloring of a hypergraph requires the function c to satisfy an
additional condition c(e) € L(e) for each e € E, where L(e) is the list of colors available to edge e. Let us consider a function
fe : L(e) — Nfore € E.If for all e, all elements x € L(e) are assigned cost f.(x) and the aim of the coloring is to minimize
the total cost, then the problem becomes a cost list edge-coloring (CLEC) of the hypergraph.

There is a one-to-one correspondence between cost list edge-coloring of a hypergraph and the cost list scheduling
model presented in this section. Vertices of a hypergraph correspond to processors, edges to jobs and colors to time slots.
A hypergraph created for an instance of a scheduling problem is called a scheduling hypergraph. From now on the terms
‘scheduling’ and ‘edge coloring’ will be used interchangeably. In Fig. 1 we give an example of an instance of the cost list
scheduling problem, and a solution to it with total value 9. We assume in the example that f,(x) = x for all e and x.

The hypergraph coloring problem is in the general case NP-hard. For this reason we consider some sparse and specific
hypergraphs in this paper. A hyperforest H is a hypergraph such that there exists a spanning tree T (simple graph) for which
each edge of H induces a connected subtree in T. A connected hyperforest is called a hypertree. We say that a hypergraph is
linear if no two edges share more then one vertex.
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