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a b s t r a c t

It has been known that every planar 4-graph has a 2-bend 2-D orthogonal drawing, with
the only exception being the octahedron, every planar 3-graph has a 1-bend 2-D orthogonal
drawingwith the only exception being K4, and every outerplanar 3-graphwith no triangles
has a 0-bend 2-D orthogonal drawing. We show in this paper that every series-parallel 4-
graph has a 1-bend 2-D orthogonal drawing.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider the problemof generating orthogonal drawings of graphs in the plane. The problemhas obvious applications
in the design of VLSI circuits and optoelectronic integrated systems: see for example [7,10].
Throughout this paper, we consider simple connected graphs G with vertex set V (G) and edge set E(G). We denote by

dG(v) the degree of a vertex v in G, and by ∆(G) the maximum degree of vertices of G. G is called a k-graph if ∆(G) ≤ k. A
graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing of a
planar graph G is called a 2-D drawing of G. A 2-D orthogonal drawing of a planar graph G is a 2-D drawing of G such that each
edge is drawn by a sequence of contiguous horizontal and vertical line segments. Notice that a graph G has a 2-D orthogonal
drawing only if∆(G) ≤ 4. A 2-D orthogonal drawing with no more than b bends per edge is called a b-bend 2-D orthogonal
drawing.
Biedl and Kant [1], and Liu, Morgana, and Simeone [5] showed that every planar 4-graph has a 2-bend 2-D orthogonal

drawing, with the only exception being the octahedron shown in Fig. 1(a), which has a 3-bend 2-D orthogonal drawing, as
shown in Fig. 1(b). Moreover, Kant [4] showed that every planar 3-graph has a 1-bend 2-D orthogonal drawing with the
only exception being K4 shown in Fig. 1(c), which has a 2-bend 2-D orthogonal drawing, as shown in Fig. 1(d). Zhou and
Nishizeki [11] showed a linear time algorithm to generate a 1-bend 2-D orthogonal drawing for a series-parallel 3-graph.
Nomura, Tayu, and Ueno [6] showed that every outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if
it contains no triangle as a subgraph. On the other hand, Garg and Tamassia proved that it is N P -complete to decide if a
given planar 4-graph has a 0-bend 2-D orthogonal drawing [3]. Di Battista, Liotta, and Vargiu showed that the problem can
be solved in polynomial time for planar 3-graphs and series-parallel graphs [2]. Rahman, Egi, and Nishizeki [8] showed that
the problem can be solved in linear time for series-parallel 3-graphs.
We show in this paper the following theorem.

Theorem 1. Every series-parallel 4-graph has a 1-bend 2-D orthogonal drawing. �
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(a) Octahedron. (b) 3-bend 2-D
orthogonal drawing of
octahedron.

(c) K4 . (d) 2-bend 2-D
orthogonal
drawing of K4 .

Fig. 1. Octahedron, K4 , and their 2-D orthogonal drawings.

(a)Λ1 . (b)Λ′1 .

Fig. 2. Shape-equivalent polygonsΛ1 andΛ′1 .

The proof of Theorem 1 is constructive and provides a polynomial-time algorithm to generate such a drawing for a series-
parallel 4-graph.

2. Preliminaries

A series-parallel graph is defined recursively as follows.
(1) A graph consisting of two vertices joined by a single edge is a series-parallel graph. The vertices are the terminals.
(2) If G1 is a series-parallel graph with terminals s1 and t1, and G2 is a series-parallel graph with terminals s2 and t2, then a
graph G obtained by either of the following operations is also a series-parallel graph:
(i) Series-composition: identify t1 with s2. Vertices s1 and t2 are the terminals of G.
(ii) Parallel-composition: identify s1 and s2 into a vertex s, and t1 and t2 into t . Vertices s and t are the terminals of G.

A series-parallel graph G is naturally associated with a binary tree T (G), which is called a decomposition tree of G. The
nodes of T (G) are of three types, S-nodes, P-nodes, and Q -nodes. T (G) is defined recursively as follows:
(1) If G is a single edge, then T (G) consists of a single Q -node.
(2-i) If G is obtained from series-parallel graphs G1 and G2 by the series-composition, then the root of T (G) is an S-node,

and T (G) has subtrees T (G1) and T (G2) rooted at the children of the root of G.
(2-ii) If G is obtained from series-parallel graphs G1 and G2 by the parallel-composition, then the root of T (G) is a P-node,

and T (G) has subtrees T (G1) and T (G2) rooted at the children of the root of G.

Notice that the leaves of T (G) are the Q -nodes, and an internal node of T (G) is either an S-node or P-node. Notice, also,
that every P-node has at most one Q -node as a child, since G is a simple graph. If G has n vertices then T (G) hasO(n) nodes,
and T (G) can be constructed inO(n) time [9]. It should be noted that the decomposition tree defined here is slightly different
from the well-known SPQ-tree for a series-parallel graph.
A polygon is said to be rectilinear if every edge of the polygon is parallel to the horizontal or the vertical axes. LetΛ and

Λ′ be rectilinear polygons with distinguished vertices σ and σ ′, respectively. Λ and Λ′ are said to be shape-equivalent if
walking clockwise around Λ and Λ′ from σ and σ ′, respectively, we have the same sequence of left and right turns for Λ
and Λ′. Fig. 2 shows shape-equivalent rectilinear polygons Λ1 and Λ′1 whose corresponding sequence is (L, R, R, R, R, L),
where L and R denote left and right turns, respectively.
Let Λ be a rectilinear polygon with distinguished vertices σ and τ , and Λ′ be a rectilinear polygon with distinguished

vertices σ ′ and τ ′. Λ and Λ′ are shape-equivalent if walking clockwise around Λ and Λ′ from σ and σ ′, respectively, we
have the same sequence of left turns, right turns, and the direction (left turn, right turn, or go straight) at τ and τ ′ for
Λ and Λ′, respectively. Fig. 3 shows shape-equivalent rectilinear polygons Λ2 and Λ′2 whose corresponding sequence is
S = (L, R, R, R, L, F , L, R, R, R, L), where F denotes the direction of going straight at τ and τ ′. On the other hand, a rectilinear
polygon shown in Fig. 4 is not shape-equivalent to Λ2 or Λ′2, since the sequence (L, R, R, R, L, R

Ď, L, R, R, R, L) is different
from S, where RĎ denotes the right turn at τ ′′.
Any two rectilinear rectangles with no distinguished vertex are defined to be shape-equivalent.
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