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Abstract

Steganography is concerned with communicating hidden messages in such a way that no one apart from the sender and the
intended recipient can detect the very existence of the message. We study the syndrome coding method (sometimes also called
the “matrix embedding method”), which uses a linear code as an ingredient. Among all codes of a fixed block length and fixed
dimension (and thus of a fixed information rate), an optimal code is one that makes it most difficult for an eavesdropper to detect
the presence of the hidden message. We show that the average distance to code is the appropriate concept that replaces the covering
radius for this particular application. We completely classify the optimal codes in the cases when the linear code used in the
syndrome coding method is a one- or two-dimensional code over GF(2). In the steganography application this translates to cases
when the code carries a high payload (has a high information rate).
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Steganography is the scientific discipline concerned with communicating hidden messages in such a way that
no one apart from the sender and the intended recipient can detect the existence of the message. This process is
fundamentally different from cryptography, where the existence of a secret message may be suspected by anyone who
can observe the scrambled ciphertext while it is communicated.

A common technique in steganography is to embed the hidden message into a larger cover object (such as a digital
image, for example) by slightly distorting the cover object in a way that on one hand makes it possible for the intended
recipient to extract the hidden message, but on the other hand makes it very hard for everybody else to detect the
distortion of the cover object (i.e., to detect the existence of the hidden message). The amount of noise that is naturally
(inherently) present in the cover object determines the amount of distortion that can be introduced into the cover object
before the distortion becomes detectable.

Syndrome coding, sometimes also called matrix embedding [9,6,7] or coset encoding [3], is a steganography method
which requires the sender and the recipient to agree in advance on a parity check matrix H ; the secret message is then
extracted by the recipient as the syndrome (with respect to H ) of the received cover object.
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We restrict our study to the binary case. All codes considered in this article are binary linear codes. Let C ⊆ Fn
2 be

the code defined by H , where F2 denotes the field with two elements.
The syndrome coding method is surveyed in Section 2. In Section 3 we show that the amount of distortion

introduced by this method is measured by the average weight of a coset leader for C (which is also the average
distance from a vector in Fn

2 to C). We denote this quantity as Ra(C) since it can be viewed as an “averaged” version
of the classical concept of the covering radius of C . We say that C is optimal if it minimizes Ra(C) among all codes
of the same block length and dimension. The main part of the article is Section 4.2 in which we completely classify
the optimal two-dimensional codes using combinatorial counting methods. We conclude by discussing some possible
applications of our results in Section 4.3.

2. Linear codes for steganography

Throughout this article we will use some standard concepts and results from coding theory which can be found for
example in [10]. By Fk

2 we denote the k-dimensional vector space over F2. (Depending on the choice which is more
convenient in the context, we will use either row vectors or column vectors.) The standard basis of Fn

2 will be denoted
by {e1, . . . , en}, that is, (ei ) j = 1 if i = j and (ei ) j = 0 otherwise. The F2-span of {v1, . . . , vk} ⊂ Fn

2 will be denoted
by 〈v1, . . . , vk〉. By 0 and 1 we denote the all-zero and all-one vector of the appropriate dimension. For simplicity, we
write br1

1 br2
2 . . . b

rs
s to represent a vector whose first r1 coordinates are equal to b1, next r2 coordinates are equal to b2,

etc. By Fk×n
2 we will denote the set of all k × n matrices over F2.

Syndrome coding, sometimes also called matrix embedding [9,6,7] or coset encoding [3], is a steganography method
that uses linear codes. Suppose that the cover object is a multimedia binary file, say a digital image consisting of n
pixels. Suppose that one bit of information is extracted from each pixel of the image, for example the least significant
bit (on the grayscale map) of that pixel. Let E ∈ Fn

2 be the sequence of n bits extracted from the cover object, and
let M ∈ Fm

2 be the message that we want to embed (m ≤ n). The sender and the recipient agree in advance on a
matrix H ∈ Fm×n

2 of rank m. To perform the hidden message embedding, the sender finds a vector δ ∈ Fm
2 such that

H(E + δ) = M , that is, Hδ = M − H E , and then the sender changes the cover object in the following way: For
any j ∈ {1, . . . , n} the sender leaves the j-th pixel of the image unchanged if δ j = 0, whereas (s)he flips the least
significant bit of the j-th pixel if δ j = 1. The receiver recovers the hidden message by simply computing M = H E ′,
where E ′ is the sequence of n bits extracted from the distorted cover object. The total amount of distortion is thus the
Hamming weight (number of ones) in the vector δ = E ′ − E .

It is well known that the set of vectors x satisfying H x = M−H E is a coset of the linear code for which H serves
as a parity check matrix. Finding a vector of the lowest weight in a coset is the well-known coset leader problem.
We will assume that, in order to minimize the distortion, the sender will always use a coset leader for the vector δ
introduced above. The largest weight of any coset leader is the covering radius of the code.

A recent historical account of the connection between Steganography and covering codes [3] appears in the
introduction to [2] where the references [1,4,8,11] are listed. Another relevant reference is [5].

3. Average distance to a linear code

Let k := n − m and let C be the [n, k] code for which H serves as a parity check matrix, where n, m and H are as
in the previous section. Since the message M is typically encrypted before being embedded into the cover object, it
is reasonable to assume that M is drawn uniformly at random from Fm

2 . Therefore, the expected amount of distortion
per one message M is equal to the average weight of a coset leader

1
2n−k

∑
u∈L(C)

w(u), (1)

where L(C) is a set of coset leaders for C and w denotes the Hamming weight function throughout the article. For
every v ∈ Fn

2 , the distance of v from C is naturally defined as

d(v,C) = min{w(v − c) : c ∈ C} = w(u),
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