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a b s t r a c t

Let k be a positive integer and G be a simple connected graph with order n. The average
distanceµ(G) of G is defined to be the average value of distances over all pairs of vertices of
G. A subset D of vertices in G is said to be a k-dominating set of G if every vertex of V(G)−D is
within distance k from some vertex of D. The minimum cardinality among all k-dominating
sets of G is called the k-domination number γk(G) of G. In this paper tight upper bounds
are established forµ(G), as functions of n, k and γk(G), which generalizes the earlier results
of Dankelmann [P. Dankelmann, Average distance and domination number, Discrete Appl.
Math. 80 (1997) 21–35] for k = 1.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [18]. Let G = (V, E) be a finite
simple connected graph with vertex set V = V(G) and edge set E = E(G). The distance dG(x, y) between two vertices x and
y is the length of a shortest xy-path in G. For S ⊆ V(G), G[S] denotes the subgraph of G induced by S and for v ∈ V(G),
dG(v, S) = min{dG(v, u) : u ∈ V(S)}. The eccentricity eG(v) of v is max{dG(v, x) : x ∈ V(G)}. The radius rad(G) and the diameter
diam(G) of G are the smallest and the largest eccentricities of the vertices in G, respectively. A vertex with eG(v) = diam(G)
is called a diametral vertex. A vertex v is a central vertex if eG(v) = rad(G) and the center of G is the set of all central vertices.
The degree of a vertex x ∈ V(G), denoted by degG(x), is the number of edges incident to the vertex x. A vertex of degree one
is called an end-vertex. Let Pn denote a path of order n and Pxy a path with end-vertices x and y. If the length of a path Pxy is
equal to diam(G), then we call Pxy a diametral path in G.

The average (or mean) distance of G is defined to be the average over all pairs of vertices of G, i.e.,

µ(G) =
1

n(n− 1)

∑
x,y∈V

dG(x, y).

Like diameter, Wiener index [13,17] or other parameters, apart from their own graph-theoretic interests, the average
distance has numerous applications in analyzing problems in communication networks, geometry and physical chemistry.
It is the reason why this concept has received considerable attention in the literature. There are several excellent surveys
of earlier results on average distance of graphs, one of which is due to Plesnik [15]. Thus, many efforts have been made by
several authors to establish the relationships between average distance and other graph parameters (see, for example, [1,2,
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6–8,15,16]). For convenience, let

σ(x) = σ(x,G) =
∑
y∈V

dG(x, y), σ(G) =
∑
x∈V

σ(x) =
∑

(x,y)∈V×V

dG(x, y),

be the transmission of a vertex x ∈ V , and the transmission of the graph G, respectively. In order to avoid large fractions,
we will often deal with σ(G) rather than µ(G). Apart from average distance, σ(G) also occurs in the computation of other
graph-theoretical parameters, such as the forwarding index of a routing [5,12], and physical chemistry [9].

A subset I of vertices in G is said to be k-independent if every vertex in I is at distance at least k + 1 from every other
vertex of I in G. The k-independence number of G, denoted by αk(G), is defined to be the maximum cardinality among all
k-independent sets of G. If k = 1, α1(G) is α(G), the independence number of G. Dankelmann, Oellermann and Swart [7] gave
the bounds on the average distance with order n and independence number α(G). Firby and Haviland [8] established sharp
lower bounds for the average distance of G, in terms of the k-independence number αk(G), and described the associated
extremal graphs, thereby extending the aforementioned work of Dankelmann et al. for k = 1.

A subset D of vertices in G is said to be a k-dominating set of G if every vertex of V(G) − D is within distance k from
some vertex of D. The minimum cardinality among all k-dominating sets of G is called the k-domination number of G and is
denoted by γk(G). For the special case of k = 1, γ1(G) is the classic domination number of G. The concept of k-dominating set
was introduced by Chang and Nemhauser [3,4] and finds applications in many situations and structures which give rise to
graphs, see the books by Haynes, Hedetniemi and Slater [10,11].

Dankelmann [6] gave the sharp upper bounds on the average distance of a graph of given order n and domination number
γ(G), and determined the extremal graphs. In this paper, by generalizing Dankelmann’s technique, we establish the sharp
upper bounds on the average distance of G, in terms of k-domination number γk(G), and describe the extremal graphs,
extending the results of Dankelmann for k = 1 in [6].

The proofs of our main results are in Section 3 and some lemmas are given in Section 2.

2. Lemmas

Lemma 2.1. Let G be a nontrivial connected graph, and k be a positive integer. Then γk(G) = min γk(T), where the minimum is
taken over all spanning trees T of G.

Proof. Let G be a nontrivial connected graph and T be a spanning tree of G. Then any k-dominating set of T is also a k-
dominating set of G. Therefore, γk(G) ≤ γk(T). Thus we have that γk(G) ≤ min γk(T), where the minimum is taken over all
spanning trees T of G.

Now we show the reverse inequality. IfG is a tree, then the theorem holds trivially. So we may assume thatG is a connected
graph containing cycles. Let D be a minimum k-dominating set of G and C be a cycle in G. If we can prove that D is also a k-
dominating set of G− e for some cycle edge e ∈ E(C), then γk(G− e) ≤ |D| = γk(G). By iterating the above operation finitely,
we get γk(T) ≤ γk(G) for some spanning tree T of G. Thus, we have that min γk(T) ≤ γk(G), where the minimum is taken over
all spanning trees T of G.

If V(C) ⊆ V(D), then obviously the vertices in V(G)− D are also all within distance k to G[D] − e for any edge e ∈ E(C).
If V(C) 6⊆ V(D), then we select two adjacent vertices x and y in V(C) such that dG(x,D) + dG(y,D) = max{dG(u,D) +

dG(v,D) : uv ∈ E(C)}. Now we will show that D is also a k-dominating set of G− {xy}.
First for any two adjacent vertices u and v in G, we have |dG(u,D) − dG(v,D)| ≤ 1. Then if w is a vertex in V(C) such

that dG(w,D) = max{dG(v,D) : v ∈ V(C)}, we have that w = x or w = y. Without loss of generality, suppose that
dG(x,D) = max{dG(v,D) : v ∈ V(C)}.

Let z be another neighbor of x different from y in V(C). So we immediately have that dG(z,D) ≤ dG(y,D). Thus, we get the
distance between a vertex in V(G)− D and D is not influenced by deleting the edge {xy}. That is to say, dG−xy(v,D) = dG(v,D)
for all vertices v in V(G). Hence, D is also a k-dominating set of G− e for some cycle edge e. �

From Lemma 2.1, we get that every connected graph G contains a spanning tree T with the same k-domination number.
That is to say, every extremal graph G with given order, k-domination number and maximum average distance is a tree. So
we have to consider only trees below.

Let S(k) denote a k-generalized star which is a tree containing one vertex whose eccentricity is at most k.

Lemma 2.2. Let H be a graph. Then γk(H−e) > γk(H) for each edge e ∈ E(H) if and only if H is the union of several vertex disjoint
k-generalized stars S(k).

Proof. Let H be a graph such that γk(H − e) > γk(H) for each edge e ∈ E(H), and D be a minimum k-dominating set of H.
If γk(H) = 1, by Lemma 2.1 and the property γk(H − e) > γk(H) for each edge e ∈ E(H), then H must be a tree and

we can easily see that H must be a k-generalized star S(k). If γk(H) ≥ 2, then for any two vertices x and y in D, we have
dH(x, y) ≥ 2k+ 1. Otherwise, if dH(x, y) ≤ 2k, then there must exist an edge e on the shortest path between x and y in H such
that γk(H − e) = γk(H).

We partition the graph H into balls of radius k, denoted H1,H2, . . . ,Hγk , whose centers are the vertices in D.
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