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Abstract

This paper provides exact probability results for waiting times associated with occurrences of two types of motifs in a random
sequence. First, we provide an explicit expression for the probability generating function of the interarrival time between two clumps
of a pattern. It allows, in particular, to measure the quality of the Poisson approximation which is currently used for evaluation of the
distribution of the number of clumps of a pattern. Second, we provide explicit expressions for the probability generating functions
of both the waiting time until the first occurrence, and the interarrival time between consecutive occurrences, of a structured motif.
Distributional results for structured motifs are of interest in genome analysis because such motifs are promoter candidates. As an
application, we determine significant structured motifs in a data set of DNA regulatory sequences.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Distributions associated with pattern occurrences in a random sequence of letters have been extensively studied in
the literature. Genome analysis is a most popular application area for such results (see [12] or [6], Chapter 6, for recent
surveys). The exact distribution of the number of occurrences of a pattern is usually obtained through the distribution
of the waiting time until the jth occurrence of the pattern. The latter distribution is derived either by recursive formulas
or through its probability generating function. The probability generating function approach leads to considering the
waiting time until the first occurrence of a pattern and the interarrival time between two consecutive occurrences of
a pattern. Explicit and calculable expressions for the probability generating functions of these quantities in Markov
sequences and for a single pattern or a set of patterns are found in [13,14,17].

Pattern occurrences may overlap in a sequence, but one may be interested in counting nonoverlapping occurrences
of a pattern. There are two ways for such counting (i) counting renewals or (ii) counting clumps of a pattern.
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In Section 2 below we consider clumps. For renewals see [2,4,10] and the references therein. A clump of a pattern
is a maximal set of overlapping occurrences of the pattern in a sequence. Poisson approximation results exist for the
distribution of the number of clumps (or declumped count) and these are theoretically valid when the sequence is long
and the pattern is rare enough [11,16]. There is no exact result for the distribution of the number of clumps in the
literature. In Section 2, we provide an explicit expression for the probability generating function of the waiting time
until the next clump occurrence (that is, the interarrival time between two consecutive clump occurrences). This leads
to the exact evaluation of the distribution of the declumped count of a pattern.

In Section 3 below we study the waiting time until the first occurrence of a more complex pattern called a structured
motif. A structured motif is composed of two patterns separated by a variable distance. The interest in this waiting time
is due to the biological challenge of identifying promoter motifs along genomes. Programs to extract automatically
structured motifs from DNA sequences exist (cf. [3,7,8]). Only statistically significant motifs should be suggested
to biologists as candidate promoters. The statistical significance of a motif in a sequence is identified through the
probability that the sequence contains at least one occurrence of the motif. Robin et al. [15] provides an approximation
to this probability. In Section 3 we provide explicit expressions for the probability generating functions of (i) the
first arrival time of a structured motif, and (ii) the intersite distance between consecutive occurrences of structured
motifs. This leads to exact evaluation of the aforementioned probability. These are the first exact probability results on
structured motifs in the literature. Note that our definition of a structured motif is slightly different from the usual one
(cf. [15]) but it accommodates all cases of structured motifs as long as the patterns involved in a structured motif do
not appear too frequently in the considered sequences. This is usually the case in practice.

In Section 4 we provide two applications to DNA sequences.

2. Clumps of a pattern

Let {X (n)}, > be an ergodic finite-state Markov chain with discrete-time parameter, state space {1, 2, ..., N}, and
one-step transition probabilities p; j, i, j = 1,2,..., N. The pattern (word) of interest is w = wjw; - - - wg, where
I<wi<N, i=1,2,...,k.Forj € {1,2,...,k}, denote the probability generating function! (p.g.f.) of the waiting
time to reach the pattern wiw; --- w; from state s by G;‘Y)(t) when we allow the initial state s to contribute to the

waiting time to reach the pattern wyw; - - w;, given the pattern wjw; --- w, has already been reached (note that
G(wl,wz,...,w/‘)

] (t) = 1). Introduce the indicator functions

Y; = Il{an occurrence of w ends at position i in the sequence}.
Denote by 1y the first return time to the pattern wjw, - - - w, that is
=inf{n>1:Y;4, =1]Y; =1}.

Of course, 74 represents the distance between two successive occurrences of the pattern (cf. Fig. 1). The possible values
of tpare1,2,....Let

ci=Ptx=i), i=12,... @2.1)

The overlapping structure of the pattern dictates which of the ¢;, i € {1, 2, ...,k — 1}, are nonzero. For instance,
if w = 33133 then only c¢; and ¢, are zero. Of course, if there is no proper prefix to be also a suffix of the pattern
wiws -+ - wi then ¢; =0, foralli € {1,2,...,k— 1} (cf. Fig. 1(B)). The ¢;’s can be obtained recursively from Robin
and Daudin [13] or calculated after expanding in a series, up to k terms, the p.g.f. G, (¢) of 7x. An explicit expression
for G, (t) can be found in the previous reference. Also one may derive such easily using the automated approach
introduced in Stefanov [17]. Clearly the p.g.f. of 7 is equal to G,iw1 W2 W) (t), where the G,g) (-) have been introduced
a few lines earlier and J is the largest integer such that wjws - - - wy is both a proper prefix and suffix to the pattern
wiws - - - wi. For instance, if w=33133 then, J = 2. The integer k — J is also called the minimal period of the pattern
wiwy - - - Wi in the terminology introduced by Guibas and Odlyzko [5].

! Recall that the probability generating function of a discrete random variable Y on {0, 1, 2, ...} is defined by Gy (¢) := Z,oio P(Y =i,
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