Note

On a new code, $\left[2^{n}-1, n, 2^{n-1}\right]$

M. Basu ${ }^{\text {a,* }}$, Md.M. Rahaman ${ }^{\text {a }}$, S. Bagchi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Kalyani, Kalyani-741235, India
${ }^{\mathrm{b}}$ Department of Mathematics, National Institute of Technology, Durgapur-713209, India

ARTICLE INFO

Article history:

Received 18 February 2008
Received in revised form 17 June 2008
Accepted 18 June 2008
Available online 5 August 2008

Keywords:

Linear code
Support
Design
Parity sectioned reduction
Sectioned code
Non-uniform error correction

Abstract

A binary linear code in F_{2}^{n} with dimension k and minimum distance d is called an [$\left.n, k, d\right]$ code. A $t-(n, m, \lambda)$ design D is a set X of n points together with a collection of m-subsets of X (called a block) such that every t-subset of X is contained in exactly λ blocks. A constant length code which corrects different numbers of errors in different code words is called a non-uniform error correcting code. Parity sectioned reduction of a linear code gives a non-uniform error correcting code. In this paper a new code, $\left[2^{n}-1, n, 2^{n-1}\right]$, is developed. The error correcting capability of this code is $2^{n-2}-1=e$. It is shown that this code holds a $2-\left(2^{n}-1,2^{n-1}, 2^{n-2}\right)$ design. Also the parity sectioned reduction code after deleting the same $g(\leq e)$ positions of each code word of this code holds a $1-\left(2^{n}-1-g, 2^{n-1}-j,{ }^{g} C_{j} .2^{n-1-g}\right)$ design for $n \geq 3, g=1,2, \ldots, e$ and $j=0,1, \ldots, g$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is important to define a new code that can be encoded or decoded efficiently with error correcting ability.
A generator matrix for the $[n, k, d]$ linear code C over F_{2}^{n} is a $k \times n$ matrix G whose rows are linearly independent of $C=\mathbf{R S}(G)$, the row space of G.

In this paper, the systematic generator matrix for a new code, $\left[2^{n}-1, n, 2^{n-1}\right]$, is defined. The different properties of this code are stated and proved.

Let P_{n} be a matrix of order $2^{n-1} \times n$. The rows of P_{n} are all binary code words of length n except the $\overline{0}$ code word.
In this paper, a systematic generator matrix of the new code is designed via $G_{n}=\left[P_{n}\right]^{t}$. Now we consider the square matrix C_{n}^{*} of order $2^{n}-1$ whose rows are all the code words generated by G_{n} except the $\overline{0}$ code word.

For example,

$$
P_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \quad G_{3}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right), \quad C_{3}^{*}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

[^0]\[

$$
\begin{aligned}
& P_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), \quad G_{4}=\left(\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
& C_{4}^{*}=\left(\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$
\]

and so on.

2. Definitions

1. Support [3]: Let \bar{x} be a binary word of length n. The set of positions in which \bar{x} has non-zero entries is called the support of \bar{x}.
2. Design [4]: Let C be a binary code of length n. Let S_{w} be the set of code words in C of weight w. We say that S_{w} holds a $t-(n, w, \lambda)$ design if the supports of code words in S_{w} form the blocks of a $t-(n, w, \lambda)$ design, and if for any t-set $T \subset\{1,2, \ldots, n\}$ there are exactly λ code words of weight w in C with 1 's in the positions given by T.
3. Parity sectioned reduction [1]: Let C be a binary e-error correcting (n, k) linear systematic code with parity check matrix $H_{n-k, n}=\left[A \mid I_{n-k}\right]$ and error range inequalities

$$
\sum_{j=1}^{n}\left|x_{j}-c_{i, j}\right| \leq e, \quad i=1,2, \ldots, 2^{k}
$$

By g-parity sectioned reduction of the code C, we mean the following operations on the parity check matrix $H_{n-k, n}$ and the error range inequalities:

1. Select some $g(\leq e)$ parity check positions for sectioning; if the code is sectioned at the p th check position, then delete the p th column and row of I_{n-k}. A reduced matrix $H_{n-k-g, n-g}=\left[A^{\prime}: I_{n-k-g}\right]$ is obtained.
2. In each code word of C, delete the g-parity check digits; in the error range inequalities, assign values from $(0,1)$ to the variables corresponding to these g positions.

3. Properties

Property 1. The matrix C_{n}^{*} can be rearranged in a manner such that the transpose of this matrix is equal to itself.
Property 2. The Hamming weight (i.e. support) of each code word of C_{n} is 2^{n-1}.
Property 3. The code C_{n} is self-orthogonal for $n>2$.

https://daneshyari.com/en/article/420732

Download Persian Version:
https://daneshyari.com/article/420732

Daneshyari.com

[^0]: * Corresponding author. Tel.: +91 9433186058; fax: +91 3325828282.

 E-mail addresses: manjusri_basu@yahoo.com (M. Basu), meeza_maths@rediffmail.com (Md.M. Rahaman), satya.bagchi@nitdgp.ac.in (S. Bagchi).

