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a b s t r a c t

A list-assignment L to the vertices of G is an assignment of a set L(v) of colors to vertex v
for every v ∈ V (G). An (L, d)∗-coloring is a mapping φ that assigns a color φ(v) ∈ L(v)
to each vertex v ∈ V (G) such that at most d neighbors of v receive color φ(v). A graph
is called (k, d)∗-choosable, if G admits an (L, d)∗-coloring for every list assignment L with
|L(v)| ≥ k for all v ∈ V (G). In this note, it is proved that every plane graph, which contains
no 4-cycles and l-cycles for some l ∈ {8, 9}, is (3, 1)∗-choosable.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notation and
terminology in [1].
For a plane graph G, we denote its vertex set, edge set, face set, and minimum degree by V (G), E(G), F(G) and δ(v),

respectively. For a vertex v, dG(v) and NG(v) denote its degree and the set of its neighbors in G, respectively.
A k-vertex (or k-face) is a vertex (or a face) of degree k, a k−-vertex (or k−-face) is a vertex (or a face) of degree at most

k, and a k+-vertex (or k+-face) is defined similarly.
Two faces of a plane graph are said to be adjacent if they have at least one common boundary edge. For x ∈ V (G)∪ F(G),

we use Fk(x) and Vk(x) to denote the set of all k-faces and k-vertices that are incident or adjacent to x, respectively. For
f ∈ F(G), we write f = [u1u2 · · · un] if u1, u2, . . . , un are on the boundary of f in a clockwise order. A k-face is called an
(m1,m2, . . . ,mk)-face if d(ui) = mi for i = 1, 2, . . . , k.
A k-coloring of G is a mapping φ from V (G) to a set of size k such that φ(x) 6= φ(y) for any adjacent vertices x and y. A

graph is k-colorable if it has a k-coloring.
A list-assignment L to the vertices of G is an assignment of a set L(v) of colors to vertex v for every v ∈ V (G). If G has a

coloring φ such that φ(v) ∈ L(v) for all vertices v, then we say that G is L-colorable or φ is an L-coloring of G. We say that G
is k-list colorable (or k-choosable) if it is L-colorable for every list-assignment L satisfying |L(v)| = k for all vertices v.
A graph G is k-colorable with deficiency d, or simply (k, d)∗-colorable, if the vertices of G can be colored with k colors

so that each vertex has at most d neighbors receiving the same color as itself. A (k, 0)∗-coloring is an ordinary k-coloring.
Given a list assignment L, an L-coloring with deficiency d, or an (L, d)∗-coloring of G, is a mapping φ : V (G)→ ∪v∈V (G) L(v)
such that φ(v) ∈ L(v) and every vertex has at most d neighbors receiving the same color as itself. A graph G is called
(k, d)∗-choosable, if there exists an (L, d)∗-coloring for every list assignment Lwith |L(v)| = k for all v ∈ V (G).
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The concept of list improper coloring was first independently introduced by Škrekovski [5], and Eaton and Hull [2]. They
proved that every plane graph is (3, 2)∗-choosable and every outerplanar graph is (2, 2)∗-choosable. Let g(G) denote the
girth of a graph G, i.e., the length of a shortest cycle. Škrekovski [7] proved that every planar graph G is (2, 1)∗-choosable
if g(G) ≥ 9, (2, 2)∗-choosable if g(G) ≥ 7, (2, 3)∗-choosable if g(G) ≥ 6, and (2, d)∗-choosable if g(G) ≥ 5 and d ≥ 4. In
[6], Škrekovski proved that every plane graph without 3-cycles is (3, 1)∗-choosable. In [4] it was proved that every plane
graph without 4-cycles and l-cycles for some l ∈ {5, 6, 7} is (3, 1)∗-choosable. In [10], it is proved that every toroidal graph
without adjacent triangles is (4, 1)∗-choosable. In [9], it is proved that every plane graphwith neither adjacent triangles nor
5-cycles is (3, 1)∗-colorable. Interested readers may read [3,8] for more results and references.
In this note, we will show that every plane graph, which contains no 4-cycles and l-cycles for some l ∈ {8, 9}, is (3, 1)∗-

choosable. This can be regarded as a complement to the result of [4].

2. Main results and proofs

In order to prove our theorems, we first present two useful lemmas:

Lemma 2.1 ([4]). Let G be a graph and d ≥ 1 an integer. If G is not (k, d)∗-choosable but every subgraph of Gwith fewer vertices
is, then the following facts hold:

(1) δ(G) ≥ k.
(2) If u ∈ V (G) is a k-vertex and v is a neighbor of u, then δ(v) ≥ k+ d.

Lemma 2.2 ([4]). Let G be a graph such that G is not (k, d)∗-choosable but every subgraph of G with fewer vertices is. If
δ(u) ≤ k+ d for a given u ∈ V (G), then δ(v) ≥ k+ d for some v ∈ N(u).

Theorem 2.1. Let G be a plane graph without any cycles of length in {4, 8}, then G is (3, 1)∗-choosable.

Proof. Suppose that G is a counterexample with the fewest vertices. First assume that G is 2-connected, thus the boundary
of each face ofG forms a cycle, and each vertex ofG is incident to exactly d(v) distinct faces. Every subgraphH ofGwith fewer
vertices is still plane and without 4, 8-cycles, so H is (3, 1)∗-choosable. Let L be an arbitrary list of G satisfying |L(v)| = 3 for
all v ∈ V (G). The following facts hold for G.

(a) δ(G) ≥ 3.
(b) G does not contain two adjacent 3-vertices.
(c) G does not contain a 4-face or two adjacent 3-faces.
(d) G does not contain a (3,4,4)-face.

Fact (b) implies that |V3(f )| ≤ bd(f )/2cfor all f ∈ F(G). Fact (c) implies that |F3(v)| ≤ bd(v)/2c for all v ∈ V (G). The
proof of Fact (d) goes as follows. Suppose to the contrary that G contains a (3, 4, 4)-face [uvw] such that d(u) = 3 and
d(v) = d(w) = 4. By the minimality of G, G − {u, v, w} has an (L, 1)∗-list coloring φ. Define L′(x) = L(x) − A(x) for every
x ∈ {u, v, w}, where A(x) denotes the set of colors that φ assigns to the neighbors of x in G − {u, v, w}. Thus |L′(u)| ≥ 2,
|L′(v)| ≥ 1, |L′(w)| ≥ 1. An (L′, 1)∗-coloring of the 3-cycle uvwu can easily be constructed. Hence, G is (L, 1)∗-colorable,
this contradicts the choice of G.
We denote a weight function w on V (G) ∪ F(G) by letting w(v) = d(v) − 4 for v ∈ V (G) and w(f ) = d(f ) − 4 for

f ∈ F(G). Applying Euler’s formula |V (G)| − |E(G)| + |F(G)| = 2 and the Handshaking Lemmas for vertices and faces of a
plane graph, we have∑

x∈V∪F

w(x) = −8.

If we obtain a new weight w∗(x) for all x ∈ V ∪ F by transferring weights from one element to another, then we also
have

∑
w∗(x) = −8. If these transfers result in w∗(x) ≥ 0 for all x ∈ V ∪ F , then we get a contradiction and the Theorem

is proved.
Now we list our discharging rules.

(R1) For every vertex v with d(v) ≥ 5, we transfer 13 from v to each adjacent 3-face.
(R2) For every 3-face f , we transfer 13 from f to each incident 3-vertex.
(R3) For every face f with d(f ) ≥ 5, we transfer 13 from f to each incident 3-vertex,

1
3 from f to each adjacent 3-face.

(R4) For every face f with d(f ) ≥ 6, we transfer 19 from f to each adjacent 5-face.

It remains to show that the resulting weightw∗ satisfiesw∗(x) ≥ 0 for all x ∈ V ∪ F .
It is evident thatw∗(x) = w(x) = 0 for all x ∈ V ∪F with d(x) = 4. Let v ∈ V (G). By (a), d(v) ≥ 3. If d(v) = 3, then, by R2

and R3,w∗(v) ≥ w(v)+ 3× 1
3 = 0. If d(v) ≥ 5, then by (c) and R1,w

∗(v) = w(v)− 1
3 × |F3(v)| ≥ w(v)−

1
3 ×b

d(v)
2 c ≥ 0.

Now let f ∈ F(G). First assume d(f ) = 3, note that f is adjacent to 5+-faces. If f is incident to just one 3-vertex, then by (d),
the boundary of f contains 5+-vertex, thus by R1 to R3,w∗(f ) ≥ w(f )+ 4× 1

3 −
1
3 = 0. If f is not incident to any 3-vertex,
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