ELSEVIER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note A note on list improper coloring of plane graphs^{*}

Wei Dong^{a,b,*}, Baogang Xu^a

^a School of Mathematics and Computer Science, Nanjing Normal University, Nanjing, 210097, China
^b Department of Mathematics, Nanjing XiaoZhuang College, Nanjing, 210017, China

ARTICLE INFO

Article history: Received 5 November 2007 Received in revised form 3 June 2008 Accepted 25 June 2008 Available online 5 August 2008

Keywords: Improper choosability Plane graph Cycle

ABSTRACT

A list-assignment *L* to the vertices of *G* is an assignment of a set L(v) of colors to vertex v for every $v \in V(G)$. An $(L, d)^*$ -coloring is a mapping ϕ that assigns a color $\phi(v) \in L(v)$ to each vertex $v \in V(G)$ such that at most *d* neighbors of *v* receive color $\phi(v)$. A graph is called $(k, d)^*$ -choosable, if *G* admits an $(L, d)^*$ -coloring for every list assignment *L* with $|L(v)| \ge k$ for all $v \in V(G)$. In this note, it is proved that every plane graph, which contains no 4-cycles and *l*-cycles for some $l \in \{8, 9\}$, is $(3, 1)^*$ -choosable.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notation and terminology in [1].

For a plane graph *G*, we denote its vertex set, edge set, face set, and minimum degree by V(G), E(G), F(G) and $\delta(v)$, respectively. For a vertex v, $d_G(v)$ and $N_G(v)$ denote its degree and the set of its neighbors in *G*, respectively.

A *k*-vertex (or *k*-face) is a vertex (or a face) of degree *k*, a k^- -vertex (or k^- -face) is a vertex (or a face) of degree at most *k*, and a k^+ -vertex (or k^+ -face) is defined similarly.

Two faces of a plane graph are said to be adjacent if they have at least one common boundary edge. For $x \in V(G) \cup F(G)$, we use $F_k(x)$ and $V_k(x)$ to denote the set of all k-faces and k-vertices that are incident or adjacent to x, respectively. For $f \in F(G)$, we write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are on the boundary of f in a clockwise order. A k-face is called an (m_1, m_2, \ldots, m_k) -face if $d(u_i) = m_i$ for $i = 1, 2, \ldots, k$.

A *k*-coloring of *G* is a mapping ϕ from *V*(*G*) to a set of size *k* such that $\phi(x) \neq \phi(y)$ for any adjacent vertices *x* and *y*. A graph is *k*-colorable if it has a *k*-coloring.

A list-assignment *L* to the vertices of *G* is an assignment of a set L(v) of colors to vertex *v* for every $v \in V(G)$. If *G* has a coloring ϕ such that $\phi(v) \in L(v)$ for all vertices *v*, then we say that *G* is *L*-colorable or ϕ is an *L*-coloring of *G*. We say that *G* is *k*-list colorable (or *k*-choosable) if it is *L*-colorable for every list-assignment *L* satisfying |L(v)| = k for all vertices *v*.

A graph *G* is *k*-colorable with deficiency *d*, or simply $(k, d)^*$ -colorable, if the vertices of *G* can be colored with *k* colors so that each vertex has at most *d* neighbors receiving the same color as itself. A $(k, 0)^*$ -coloring is an ordinary *k*-coloring. Given a list assignment *L*, an *L*-coloring with deficiency *d*, or an $(L, d)^*$ -coloring of *G*, is a mapping $\phi : V(G) \to \bigcup_{v \in V(G)} L(v)$ such that $\phi(v) \in L(v)$ and every vertex has at most *d* neighbors receiving the same color as itself. A graph *G* is called $(k, d)^*$ -choosable, if there exists an $(L, d)^*$ -coloring for every list assignment *L* with |L(v)| = k for all $v \in V(G)$.

 $[\]stackrel{\scriptsize{\rm tr}}{\approx}\,$ Research partially supported by NSFC.

^{*} Corresponding author at: School of Mathematics and Computer Science, Nanjing Normal University, Nanjing, 210097, China. *E-mail addresses*: weidong_79@hotmail.com (W. Dong), baogxu@njnu.edu.cn, baogxu@hotmail.com (B. Xu).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.06.023

The concept of list improper coloring was first independently introduced by Škrekovski [5], and Eaton and Hull [2]. They proved that every plane graph is $(3, 2)^*$ -choosable and every outerplanar graph is $(2, 2)^*$ -choosable. Let g(G) denote the girth of a graph G, i.e., the length of a shortest cycle. Škrekovski [7] proved that every planar graph G is $(2, 1)^*$ -choosable if $g(G) \ge 9$, $(2, 2)^*$ -choosable if $g(G) \ge 7$, $(2, 3)^*$ -choosable if $g(G) \ge 6$, and $(2, d)^*$ -choosable if $g(G) \ge 5$ and $d \ge 4$. In [6], Škrekovski proved that every plane graph without 3-cycles is $(3, 1)^*$ -choosable. In [4] it was proved that every plane graph without 4-cycles and *l*-cycles for some $l \in \{5, 6, 7\}$ is $(3, 1)^*$ -choosable. In [10], it is proved that every toroidal graph without adjacent triangles is $(4, 1)^*$ -choosable. In [9], it is proved that every plane graph with neither adjacent triangles nor 5-cycles is $(3, 1)^*$ -colorable. Interested readers may read [3,8] for more results and references.

In this note, we will show that every plane graph, which contains no 4-cycles and *l*-cycles for some $l \in \{8, 9\}$, is $(3, 1)^*$ -choosable. This can be regarded as a complement to the result of [4].

2. Main results and proofs

In order to prove our theorems, we first present two useful lemmas:

Lemma 2.1 ([4]). Let G be a graph and $d \ge 1$ an integer. If G is not $(k, d)^*$ -choosable but every subgraph of G with fewer vertices is, then the following facts hold:

(1) $\delta(G) \geq k$.

(2) If $u \in V(G)$ is a k-vertex and v is a neighbor of u, then $\delta(v) \ge k + d$.

Lemma 2.2 ([4]). Let G be a graph such that G is not $(k, d)^*$ -choosable but every subgraph of G with fewer vertices is. If $\delta(u) \le k + d$ for a given $u \in V(G)$, then $\delta(v) \ge k + d$ for some $v \in N(u)$.

Theorem 2.1. Let G be a plane graph without any cycles of length in $\{4, 8\}$, then G is $(3, 1)^*$ -choosable.

Proof. Suppose that *G* is a counterexample with the fewest vertices. First assume that *G* is 2-connected, thus the boundary of each face of *G* forms a cycle, and each vertex of *G* is incident to exactly d(v) distinct faces. Every subgraph *H* of *G* with fewer vertices is still plane and without 4, 8-cycles, so *H* is (3, 1)*-choosable. Let *L* be an arbitrary list of *G* satisfying |L(v)| = 3 for all $v \in V(G)$. The following facts hold for *G*.

(a) $\delta(G) \geq 3$.

- (b) *G* does not contain two adjacent 3-vertices.
- (c) G does not contain a 4-face or two adjacent 3-faces.
- (d) G does not contain a (3,4,4)-face.

Fact (b) implies that $|V_3(f)| \le \lfloor d(f)/2 \rfloor$ for all $f \in F(G)$. Fact (c) implies that $|F_3(v)| \le \lfloor d(v)/2 \rfloor$ for all $v \in V(G)$. The proof of Fact (d) goes as follows. Suppose to the contrary that G contains a (3, 4, 4)-face [uvw] such that d(u) = 3 and d(v) = d(w) = 4. By the minimality of $G, G - \{u, v, w\}$ has an $(L, 1)^*$ -list coloring ϕ . Define L'(x) = L(x) - A(x) for every $x \in \{u, v, w\}$, where A(x) denotes the set of colors that ϕ assigns to the neighbors of x in $G - \{u, v, w\}$. Thus $|L'(u)| \ge 2$, $|L'(v)| \ge 1$. An $(L', 1)^*$ -coloring of the 3-cycle uvwu can easily be constructed. Hence, G is $(L, 1)^*$ -colorable, this contradicts the choice of G.

We denote a weight function w on $V(G) \cup F(G)$ by letting w(v) = d(v) - 4 for $v \in V(G)$ and w(f) = d(f) - 4 for $f \in F(G)$. Applying Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 and the Handshaking Lemmas for vertices and faces of a plane graph, we have

$$\sum_{x\in V\cup F}w(x)=-8.$$

If we obtain a new weight $w^*(x)$ for all $x \in V \cup F$ by transferring weights from one element to another, then we also have $\sum w^*(x) = -8$. If these transfers result in $w^*(x) \ge 0$ for all $x \in V \cup F$, then we get a contradiction and the Theorem is proved.

Now we list our discharging rules.

- (R1) For every vertex v with $d(v) \ge 5$, we transfer $\frac{1}{3}$ from v to each adjacent 3-face.
- (R2) For every 3-face f, we transfer $\frac{1}{3}$ from f to each incident 3-vertex.
- (R3) For every face f with $d(f) \ge 5$, we transfer $\frac{1}{3}$ from f to each incident 3-vertex, $\frac{1}{3}$ from f to each adjacent 3-face.
- (R4) For every face f with $d(f) \ge 6$, we transfer $\frac{1}{9}$ from f to each adjacent 5-face.

It remains to show that the resulting weight w^* satisfies $w^*(x) \ge 0$ for all $x \in V \cup F$.

It is evident that $w^*(x) = w(x) = 0$ for all $x \in V \cup F$ with d(x) = 4. Let $v \in V(G)$. By (a), $d(v) \ge 3$. If d(v) = 3, then, by R2 and R3, $w^*(v) \ge w(v) + 3 \times \frac{1}{3} = 0$. If $d(v) \ge 5$, then by (c) and R1, $w^*(v) = w(v) - \frac{1}{3} \times |F_3(v)| \ge w(v) - \frac{1}{3} \times \lfloor \frac{d(v)}{2} \rfloor \ge 0$. Now let $f \in F(G)$. First assume d(f) = 3, note that f is adjacent to 5⁺-faces. If f is incident to just one 3-vertex, then by (d), the boundary of f contains 5⁺-vertex, thus by R1 to R3, $w^*(f) \ge w(f) + 4 \times \frac{1}{3} - \frac{1}{3} = 0$. If f is not incident to any 3-vertex, Download English Version:

https://daneshyari.com/en/article/420735

Download Persian Version:

https://daneshyari.com/article/420735

Daneshyari.com