
Specification and static enforcement
of scheduler-independent noninterference
in a middleweight Java

Zeinab Iranmanesh a, Mehran S. Fallah a,b,n

a Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic),
P.O. Box: 15875-4413, Tehran, Iran
b School of Computer Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 31 August 2015
Accepted 11 May 2016
Available online 18 May 2016

Keywords:
Covert channels
Multithreaded object-oriented program-
ming
Scheduler-independent noninterference
Security type systems

a b s t r a c t

We introduce a new timing covert channel that arises from the interplay between mul-
tithreading and object orientation. This example motivates us to explore the root of the
problem and to devise a mechanism for preventing such errors. In doing so, we first add
multithreading constructs to Middleweight Java, a subset of the Java programming lan-
guage with a fairly rich set of features. A noninterference property is then presented
which basically demands program executions be equivalent in the view of whom obser-
ving final public values in environments using the so-called high-independent schedulers.
It is scheduler-independent in the sense that no matter which scheduler is employed, the
executions of the program satisfying the property do not lead to illegal information flows
in the form of explicit, implicit, or timing channels. We also give a provably sound type-
based static mechanism to enforce the proposed property.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Language-based techniques have proven effective in specifying and enforcing information-flow policies. For a given
program, the security policy is essentially specified as a mapping from the set of logical information receptacles in that
program to a lattice of security classes representing levels of information sensitivity. The intended meaning of such a policy
is that no execution of the program should lead to an information flow from more to less sensitive information receptacles.
The compile-time and run-time analyses are then so conducted that the policy can be enforced. In particular, many type
systems, e.g., [1–5], have been proposed to this end.

Any violation of an information-flow policy involves illegal information flows in the form of explicit, implicit, or timing
channels. Illegal explicit flows occur when private (high) variables are assigned to public (low) variables. Implicit flows and
timing channels are more demanding and result from insecure control flows [6]. In general, giving a precise definition of
illegal flows is an arduous task and highly depends on how powerful the attackers are considered. The capabilities of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2016.05.003
1477-8424/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic),
P.O. Box: 15875-4413, Tehran, Iran. Tel.: þ98 21 6454 2718.

E-mail address: msfallah@aut.ac.ir (M.S. Fallah).

Computer Languages, Systems & Structures 46 (2016) 20–43

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.05.003
http://dx.doi.org/10.1016/j.cl.2016.05.003
http://dx.doi.org/10.1016/j.cl.2016.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.05.003&domain=pdf
mailto:msfallah@aut.ac.ir
http://dx.doi.org/10.1016/j.cl.2016.05.003
http://dx.doi.org/10.1016/j.cl.2016.05.003


attackers should, in truth, be taken into account when specifying the policy. To do so, scholars give semantic notions of
secure information flows in the form of noninterference properties. Such a property indeed defines allowable executions
and is intended to be satisfied only by those programs not leading to illegal flows.

Devising a noninterference property as such is a challenging problem and has been a main research topic in the area of
language-based security. Another problem is to find appropriate mechanisms to enforce a given information-flow policy in
programs of a given programming language. These two problems interact. The security policy should prohibit the new
attacks resulting from the features added to the language. Enforcing an effective policy in a language with a rich set of
features is also difficult. In this paper, we take this area of study one step further and tackle the problemwhere the interplay
between object orientation and multithreading leads to new illegal channels.

Some illegal information channels are peculiar to object-oriented programming. A number of security type systems have
been proposed to prevent such channels [2,7–12]. Similarly, multithreading contributes to the appearance of new illegal
channels. If the timing behavior of a thread depends on sensitive information, the run of that thread may induce timing
channels. The example code below illustrates how such a channel may be created as a result of the concurrent execution of
threads th1 and th2. In this code, h is a variable containing high values and l is a variable that can be observed by low
observers. If the initial value of h is positive, the execution of the code under a round-robin scheduler is more likely to lead
to l¼0. For a nonpositive h, however, l¼1 is more probable than l¼0. The covert channel given in this example is an
internal timing channel as it leaks information through low variables. It differs from external timing channels where the
leakage becomes viable through measuring the time taken by the code at run-time.

th1: (if h 40 then sleep(100); else skip;); l¼0;

th2: sleep(50); l¼1;

In this paper, we focus on internal timing channels. There are, in general, three principal classes of methods for elim-
inating such covert channels. The protection/hiding-based methods are intended to devise schedulers that hide security-
critical timing behavior of threads [5,13–16]. The second class is comprised of external-timing-based methods that add
dummy computations to a leaky construct [3,17–19]. Low-determinism-based methods constitute another class in which
any race on low values is prevented [4,20,21].

As stated above, there have been many attempts to bring information-flow security to the programs that make use of
objects or threads. Enforcing security policies in the presence of the two features at the same time, however, has not been
studied well. Only few works address information-flow security in multithreaded object-oriented languages. In [22], while
there are objects and threads in the language, only the part representing concurrency is dealt with formally. There is also an
extension of the protection/hiding-based method into multithreaded object-oriented programs that suggests using special
schedulers as part of the trusted computing base [23]. Although interesting, this solution requires programs to run on
machines with such schedulers.

In this paper, we first introduce a new internal timing channel that arises from dynamic dispatch in the presence of
multithreading. To ascertain how such channels may be created and prevented in a language, we first add constructs for
multithreading to a subset of Java known as Middleweight Java [24]. The next step is to give an appropriate noninterference
property. The property is such that the example covert channel and its ilk do not occur in programs satisfying the property
no matter which scheduler is employed by the run-time system. It is indeed a scheduler-independent security property.
Finally, we give a security type system and prove that it is sound. The soundness of our type system ensures that any well-
typed program of our language satisfies the proposed noninterference property.

In brief, we specify and enforce a scheduler-independent information-flow policy in a subset of the full-blown pro-
gramming language Java so that typable programs are provably secure. The proposed language is such that its programs can
be run as ordinary Java programs if the annotations specifying the security policy are eliminated. The following are the main
outcomes of this paper.

� A multithreaded model language for Java with a fairly rich set of features making it analogous to Java while remaining
amenable to in-depth analysis.

� A demonstration of how new internal timing channels may emerge as a result of the coexistence of object orientation and
multithreading.

� A more permissive scheduler-independent noninterference property addressing internal timing channels.
� A type system that provably enforces the noninterference property in programs of the presented language.

The new timing channel will be scrutinized in Section 3 where we develop a middleweight Java with the features of
object orientation and multithreading. We can, however, outline the very nature of the channel by the following piece of
code.
th1: x.m1(); l¼0;

th2: x.m2(); l¼1;

In this code, x is a variable of type C which is a class containing the two methods m1 and m2 and having two subclasses in
which m1 and m2 are overridden. The code may leak sensitive information if the subclass fromwhich x is instantiated at run-
time is determined by some confidential values. The leakage indeed happens when in one of the subclasses of C the time

Z. Iranmanesh, M.S. Fallah / Computer Languages, Systems & Structures 46 (2016) 20–43 21



Download English Version:

https://daneshyari.com/en/article/421061

Download Persian Version:

https://daneshyari.com/article/421061

Daneshyari.com

https://daneshyari.com/en/article/421061
https://daneshyari.com/article/421061
https://daneshyari.com

