
Recording concerns in source code using annotations

Matúš Sulír n, Milan Nosáľ, Jaroslav Porubän
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Letná 9, 042 00 Košice, Slovakia

a r t i c l e i n f o

Article history:
Received 25 January 2016
Received in revised form
12 July 2016
Accepted 12 July 2016
Available online 18 July 2016

Keywords:
Program comprehension
Concerns
Source code annotations
Empirical studies

a b s t r a c t

A concern can be characterized as a developer's intent behind a piece of code, often not
explicitly captured in it. We discuss a technique of recording concerns using source code
annotations (concern annotations). Using two studies and two controlled experiments, we
seek to answer the following 3 research questions: (1) Do programmers' mental models
overlap? (2) How do developers use shared concern annotations when they are available?
(3) Does using annotations created by others improve program comprehension and
maintenance correctness, time and confidence? The first study shows that developers'
mental models, recorded using concern annotations, overlap and thus can be shared. The
second study shows that shared concern annotations can be used during program com-
prehension for the following purposes: hypotheses confirmation, feature location,
obtaining new knowledge, finding relationships and maintenance notes. The first con-
trolled experiment with students showed that the presence of annotations significantly
reduced program comprehension and maintenance time by 34%. The second controlled
experiment was a differentiated replication of the first one, focused on industrial devel-
opers. It showed a 33% significant improvement in correctness. We conclude that concern
annotations are a viable way to share developers' thoughts.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Programmers developing a program continuously create a mental model, which is a representation of the program in
their mind. They try to express the mental model in the programming language constructions. However, some parts of the
mental model are not explicitly expressed in the source code. They are either implicitly indicated in complicated imple-
mentation details or lost.

1.1. Motivation

Suppose a developer encounters the Java code excerpt shown in Fig. 1(a). While reading it, the following ideas may
gradually appear in his or her mind:

� The method addProduct adds some product somewhere.
� As it is in the Catalog class, it adds the product to the catalog.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2016.07.003
1477-8424/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: matus.sulir@tuke.sk (M. Sulír), milan.nosal@gmail.com (M. Nosáľ), jaroslav.poruban@tuke.sk (J. Porubän).

Computer Languages, Systems & Structures 46 (2016) 44–65

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.07.003
http://dx.doi.org/10.1016/j.cl.2016.07.003
http://dx.doi.org/10.1016/j.cl.2016.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.07.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.07.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.07.003&domain=pdf
mailto:matus.sulir@tuke.sk
mailto:milan.nosal@gmail.com
mailto:jaroslav.poruban@tuke.sk
http://dx.doi.org/10.1016/j.cl.2016.07.003
http://dx.doi.org/10.1016/j.cl.2016.07.003


� An addition to a catalog changes its state – the catalog is modified.
� There is a condition checking whether a user is logged.
� To successfully perform this operation, a logged user must be a manager; otherwise an exception is thrown.

While this process may seem natural, it has the following shortcomings:

� The fact that the code modifies a catalog is formed only after reading two parts of the code far apart.
� The information that a “manager account” is necessary is formed after reading a rather lengthy piece of code.
� There is one important piece of information not identified at all: the added product actually appears in the catalog only

after the administrator approves it. This information is not apparent from this excerpt, and may be the result of coop-
eration of many remotely related classes.

Now suppose the developer originally writing the code, or any other programmer maintaining it, annotated the source
code with concern annotations (source code annotations are declarative marks used to decorate source code with metadata
[1]), as displayed in Fig. 2(a). The developer later reading it would rapidly obtain a mental model containing useful infor-
mation about the code, without even looking at the method implementation, scrolling through the code to stitch the pieces
of information, or even debug it to explain unexpected behavior. Furthermore, it would be possible to find all methods
requiring approval in case of refactoring or business policy changes. As annotations are a part of the Java language, no
additional tools are required: standard IDE (integrated development environment) features like Find Usages could be used.

Fig. 1. An example of unannotated source code and the corresponding mental model.

Fig. 2. The annotated source code and the corresponding mental model.

M. Sulír et al. / Computer Languages, Systems & Structures 46 (2016) 44–65 45



Download English Version:

https://daneshyari.com/en/article/421062

Download Persian Version:

https://daneshyari.com/article/421062

Daneshyari.com

https://daneshyari.com/en/article/421062
https://daneshyari.com/article/421062
https://daneshyari.com

